Code No: 841AA
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA I Semester Examinations, June/July - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
Time: 3hrs
Max.Marks:75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A
5×5 Marks $=25$
1.a) Construct the truth table for $(\mathrm{P} \wedge \mathrm{Q}) \rightarrow(\mathrm{P} \vee \mathrm{Q})$.
b) Define complement of a function and inverse of a function. Give examples.
c) Find the coefficient of $x^{4} y^{7}$ in the expansion of $(x-y)^{11}$.
d) What is meant by generating function? What is its significance?
e) Find the minimum number of vertices in a simple, connected, planar graph with 19 edges. Justify your answer.
[5]

PART - B

5×10 Marks $=50$
2.a) Using indirect method of proof, derive $P \rightarrow \neg S$ from $P \rightarrow Q \vee R, Q \rightarrow \neg P, S \rightarrow \neg R, P$.
b) Contrast propositional logic with predicate logic.

OR
3. Explain automatic theorem proving with the following expression

$$
\begin{equation*}
\mathrm{P}, \neg \mathrm{P} \vee(\mathrm{P} \vee \mathrm{Q}) \rightarrow \mathrm{Q} \tag{10}
\end{equation*}
$$

4.a) If $f: X \rightarrow Y$ and $g: Y \rightarrow X$ the function g is equal to $f-1$ only if $g \bullet f=I_{x}$ and $f \bullet g=I_{y}$. Prove the result,
b) Let $f: R \rightarrow R$ and $g: R \rightarrow \hat{R}$ where R is the set of real numbers. Find $f \cdot g$ and $g \cdot f$ where $f(x)=x^{2}-2, g(x)=x+4$. State whether these functions are injective, subjective or objective.

OR

5.a) Let L a finite distributive lattice. Then prove that every element in L can be written uniquely (except for order) as the join of irredundant join-irreducible elements.
b) Prove the independent laws for the elements of a lattice.
6. Find the number of ways three roses, four marigolds and five hibiscuses can be planted:
a) In a row such that all plants of the same family is next to each other.
b) In a row such that the hibiscus are planted in between the other two families of plants.
[5+5]

OR

7.a) Find the number of different arrangements of the letters of the word REFERENCE.
b) State inclusion-exclusion principle.
8. Solve the recurrence relation $a_{n}-7 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0$ for $n>=2$.

OR
9. Demonstrate the solutions for non-homogeneous recurrence relation.
10.a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic.
b) Suppose G1 and G2 are isomorphic prove that if G1 is connected then G2 is also connected.
[5+5]
OR
11.a) State and explain the Four - Colour problem for planar graphs.
b) Prove that the regions of a planar graph can be 4 - coloured if G has a Hamiltonian cycle.

