www.FirstRanker.com

Code No: 841AD

R17
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA I Semester Examinations, June/July - 2018 PROBABILITY AND STATISTICS
Time: 3hrs
Max.Marks:75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

$$
5 \times 5 \text { Marks }=25
$$

1.a) A bag contains 26 red balls and 24 green balls. If one ball is randomly selected from this bag, find the probability that this ball is i) red and ii) green.
b) Define discrete and continuous random variables with an example of each. [5]
c) If a random sample of size 81 is taken whose variance is 20.25 and mean is 32 , construct 98% confidence interval.
d) Explain errors in sampling.
e) Derive normal equations to fit a straight line of the form $y=a x+b$ for a given set of N data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots \ldots N$.

PART $_{-}$B

$$
5 \times 10 \text { Marks }=50
$$

2.a) State and prove addition theorem of probability.
b) Let A and B be two events with $P(A \cup B)=\frac{7}{8}, P(A \cap B)=\frac{1}{4}$ and

$$
\begin{equation*}
P(\bar{A})=\frac{5}{8} \text {. Find i) } P(A) \text { ii) } P(B) \text { iii) } P(\bar{A} \cup \bar{B}) \tag{5+5}
\end{equation*}
$$

OR

3.a) State and prove Baye's theorem.
b) A business man goes to hotels $A, B, C, 20 \%, 50 \%, 30 \%$ of the times respectively. It is known that $5 \%, 4 \%, 8 \%$ of the rooms in A, B, C hotels have faulty plumbings. What is the probability that the business man's room having faulty plumbing is assigned to hotel C ?
4.a) A random variable X has the following probability distribution.

$\mathrm{X}:$	0	1	2	3	4
$\mathrm{P}(\mathrm{X}):$	C	2 C	2 C	C^{2}	$5 \mathrm{C}^{2}$

Find i) C and ii) the distribution function of X.
b) A continuous random variable X has pdf $f(x)=\frac{3}{4}\left(x^{2}+1\right), 0 \leq x \leq 1$. Find

$$
\begin{equation*}
\text { i) ' } a \text { ' such that } P(X \leq a)=P(X>a) \text { and ii) mean of } X \text {. } \tag{5+5}
\end{equation*}
$$

OR

5. Find the mean and variance of Normal distribution.
6. Let $S=\{1,5,6,8\}$. Find the probability distribution of the sample mean for random sample of size 2 without replacement.

OR

7. In how many ways estimation can be done and what are they? Explain in detail.
8. In two large populations, there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?

OR

9. Two independent samples of sizes 8 and 7 had the following values.
$\begin{array}{llllllllll}\text { Sample A } & 11 & 11 & 13 & 11 & 15 & 9 & 12 & 14\end{array}$
Sample B $\quad 9 \quad 11 \quad 10$
Is the difference between the means of samples significant?
10. Construct the least squares linear and quadratic approximations to the following data:

$\mathrm{x}:$	1	2	3	4	5
$\mathrm{y}:$	2.5	4.5	3.7	5.0	4.2

OR
11. Show that $r=\frac{\sigma_{x}^{2}+\sigma_{y}^{2}-\sigma_{x-y}^{2}}{2 \sigma_{x} \sigma_{y}}$, where $\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{x-y}^{2}$ are variances of $x, y, x-y$ respectively. Hence find the correlation coefficient r for the following data: [10]

$\mathrm{x}:$	6	5	8	8	7	6	10	4	9	7
$\mathrm{y}:$	8	7	7	10	5	8	10	6	8	6

