

www.FirstRanker.com

www.FirstRanker.com

Code No: 821AA

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA I Semester Examinations, August - 2017 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Time: 3hrs Max.Marks:75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

 5×5 Marks = 25

- What do you mean by a well-formed formula? Give examples of formulas that are well-formed and not well-formed.
 - b) What do you mean by a lattice? List the properties of a lattice.
 - c) What are the two basic counting principles. [5]
 - d) Give the generating functions for the sequences C(k,n), aⁿ, (-1)ⁿ and n. [5]
 - e) Is there a graph with degree sequence (1,3,3,3,5,6,6)? Justify your answer. [5]

PART - B

 $5 \times 10 \text{ Marks} = 50$

- 2.a) Show the following equivalences:
 - $A \rightarrow (P \lor C) \Leftrightarrow (A \land \neg P) \rightarrow C$
 - $(P \rightarrow C) \land (Q \rightarrow C) \Leftrightarrow (P \lor Q) \rightarrow C$
 - b) Show that the following premises are inconsistent:
 - i) If Jack misses many classes through illness, then he fails high school.
 - ii) If Jack fails high school, then he is uneducated.
 - iii) If Jack reads a lot of books, then he is not uneducated.
 - Jack misses many classes through illness and reads a lot of books.

OR

- 3.a) Obtain a principal conjunctive normal form of each of the following formulas:
 - i) $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$
 - $(P \land (Q \rightarrow P))$
 - b) Show that $(x)(P(x) \rightarrow Q(x)) \land (x)(Q(x) \rightarrow R(x)) \Rightarrow (x)(P(x) \rightarrow R(x))$ [5+5]
- 4.a) Let X = {1,2,...,7} and R = {(x,y) | x y is divisible by 3}. Show that R is an equivalence relation. Draw the graph of R.
 - b) Show that in a group (G,*), if for any a, b ∈ G, (a*b)² = a²*b², then (G,*)must be abelian.
 [5+5]

OR

- 5.a) Let f(x) = x + 2, g(x) = x 2, and h(x) = 3x for $x \in R$, where R is the set of real numbers. Find $g \circ f$, $f \circ g$, $f \circ f$, $g \circ g$, $f \circ h \circ g$.
 - b) Find all the subgroups of $(Z_{12}, +_{12})$ and (Z_{7}, \times_{7}) [5+5]

www.FirstRanker.com

www.FirstRanker.com

- 6.a) How many ways are there to distribute 10 balls into 6 boxes with atmost 4 balls in the first 2 boxes if:
 - i) The balls are indistinguishable
 - ii) The balls are distinguishable

b) Verify that
$$C(n+3,r)-3C(n+2,r)+3C(n+1,r)-C(n,r)=C(n,r-3)$$
 [5+5]

OF

- 7.a) Find the number of integral solutions for the following:
 - i) $x_1 + x_2 + x_3 + x_4 + x_5 = 10$ where $x_i \ge 0$
 - ii) $x_1 + x_2 + x_3 + x_4 = 50$, where $x_1 \ge -4$, $x_2 \ge 7$, $x_3 \ge -14$, $x_4 \ge 10$
 - b) Determine the coefficient of x^5 in $(a+bx+cx^2)^{10}$ and $(x-7y)^{15}$. [5+5]
- 8.a) Build a generating function for a_r = the number of integral solutions to the equation $x_1 + x_2 + x_3 = r$
 - i) $0 \le x_i \le 3$ for each i
 - ii) $2 \le x_i \le 5$ for each i
 - b) Write a generating function for a_n, the number of ways of obtaining the sum n when tossing 9 distinguishable dice. Then find a₂₆. [5+5]

OF

- 9.a) Solve the following recurrence relations using the characteristic roots:
 - i) $a_n 3a_{n-1} 4a_{n-2} = 0$ for $n \ge 2$ and $a_0 = a_1 = 1$.

ii)
$$a_n - 4a_{n-1} - 12a_{n-2} = 0$$
 for $n \ge 2$ and $a_0 = 4$, $a_1 = 16/3$. [5+5]

- b) Write the general form of a particular solution a_n^P to the following recurrence relations:
 - i) $a_n 7a_{n-1} + 12a_{n-2} = n$

ii)
$$a_n - 7a_{n-1} + 12a_{n-2} = 2^n$$
 [5+5]

- 10.a) Demonstrate with an example breadth-first search algorithm.
 - b) Are the graphs shown below isomorphic? Justify your answer. [5+5]

OR

11.a) Obtain the minimal spanning tree for the following graph.

b) Draw a full regular tree of degree 2 and height 3.

[5+5]