

Code No: 821AA

www.FirstRanker.com

www.FirstRanker.com

R15 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

MCA I Semester Examinations, August - 2017

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Max.Marks:75

Time: 3hrs

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

5×5 Marks = 25

[5]

[5]

- What do you mean by a well-formed formula? Give examples of formulas that are well-1.a) formed and not well-formed. [5]
 - What do you mean by a lattice? List the properties of a lattice. b)
 - What are the two basic counting principles. c)
 - Give the generating functions for the sequences C(k,n), a^n , $(-1)^n$ and n. [5] d)
 - Is there a graph with degree sequence (1,3,3,3,5,6,6)? Justify your answer. [5] e)

PART - B

 5×10 Marks = 50

2.a) Show the following equivalences: i) $A \rightarrow (P \lor C) \Leftrightarrow (A \land \neg P) \rightarrow C$

$$(P \to C) \land (Q \to C) \Leftrightarrow (P \lor Q) \to C$$

- b) Show that the following premises are inconsistent: i) If Jack misses many classes through illness, then he fails high school. ii) If Jack fails high school, then he is uneducated.
 - iii) If Jack reads a lot of books, then he is not uneducated.
 - iv) Jack misses many classes through illness and reads a lot of books. [5+5]OR
- 3.a) Obtain a principal conjunctive normal form of each of the following formulas: $_{i)} (\neg P \rightarrow R) \land (Q \leftrightarrow P)$ $\stackrel{2}{\text{ii}} P \to (P \land (Q \to P))$

b) Show that
$$(x)(P(x) \rightarrow Q(x)) \land (x)(Q(x) \rightarrow R(x)) \Rightarrow (x)(P(x) \rightarrow R(x))$$
 [5+5]

- Let $X = \{1, 2, \dots, 7\}$ and $R = \{(x, y) \mid x y \text{ is divisible by } 3\}$. Show that R is an equivalence 4.a) relation. Draw the graph of R.
 - Show that in a group (G,*), if for any a, $b \in G$, $(a*b)^2 = a^2*b^2$, then (G,*)must be b) abelian. [5+5]

OR

- 5.a) Let f(x) = x + 2, g(x) = x - 2, and h(x) = 3x for $x \in R$, where R is the set of real numbers. Find $g \circ f$, $f \circ g$, $f \circ f$, $g \circ g$, $f \circ h \circ g$.
 - b) Find all the subgroups of $(Z_{12},+_{12})$ and (Z_7^*,\times_7) [5+5]

www.FirstRanker.com

www.FirstRanker.com

anker.<mark>com</mark>

6.a) How many ways are there to distribute 10 balls into 6 boxes with atmost 4 balls in the first 2 boxes if: i) The balls are indistinguishable ii) The balls are distinguishable b) Verify that C(n+3,r) - 3C(n+2,r) + 3C(n+1,r) - C(n,r) = C(n,r-3)[5+5] OR 7.a) Find the number of integral solutions for the following: i) $x_1 + x_2 + x_3 + x_4 + x_5 = 10$ where $x_i \ge 0$ ii) $x_1 + x_2 + x_3 + x_4 = 50$, where $x_1 \ge -4$, $x_2 \ge 7$, $x_3 \ge -14$, $x_4 \ge 10$ Determine the coefficient of x^5 in $(a + bx + cx^2)^{10}$ and $(x - 7y)^{15}$. b) [5+5] 8.a) Build a generating function for a_r = the number of integral solutions to the equation $x_1 + x_2 + x_3 = r$ i) $0 \le x_i \le 3$ for each *i* ii) $2 \le x_i \le 5$ for each *i* Write a generating function for a_n , the number of ways of obtaining the sum n when b) tossing 9 distinguishable dice. Then find a_{25} . [5+5]Solve the following recurrence relations using the characteristic roots: 9.a) i) $a_n - 3a_{n-1} - 4a_{n-2} = 0$ for $n \ge 2$ and $a_0 = a_1 = 1$ ii) $a_n - 4a_{n-1} - 12a_{n-2} = 0$ for $n \ge 2$ and $a_0 = 4$, $a_1 = 16/3$. [5+5] Write the general form of a particular solution a_n^P to the following recurrence relations: b) i) $a_n - 7a_{n-1} + 12a_{n-2} = n$ ii) $a_n - 7a_{n-1} + 12a_{n-2} = 2^n$ [5+5]

10.a) Demonstrate with an example breadth-first search algorithm.

b) Are the graphs shown below isomorphic? Justify your answer. [5+5]

OR

11.a) Obtain the minimal spanning tree for the following graph.

b) Draw a full regular tree of degree 2 and height 3.

[5+5]

---00000----

www.FirstRanker.com