Code No: 821AA
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
MCA I Semester Examinations, August - 2017 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
Time: 3hrs
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A
5×5 Marks $=25$
1.a) What do you mean by a well-formed formula? Give examples of formulas that are wellformed and not well-formed.
b) What do you mean by a lattice? List the properties of a lattice.
c) What are the two basic counting principles.
d) Give the generating functions for the sequences $C(k, n), a^{n},(-1)^{n}$ and n.
e) Is there a graph with degree sequence ($1,3,3,3,5,6,6$)? Justify your answer.

PART - B

5×10 Marks $=50$
2.a) Show the following equivalences:
i) $A \rightarrow(P \vee C) \Leftrightarrow(A \wedge \neg P) \rightarrow C$
ii) $(P \rightarrow C) \wedge(Q \rightarrow C) \Leftrightarrow(P \vee Q) \rightarrow C$
b) Show that the following premises are inconsistent:
i) If Jack misses many classes through illness, then he fails high school.
ii) If Jack fails high school, then he is uneducated.
iii) If Jack reads a lot of books, then he is not uneducated.
iv) Jack misses many classes through illness and reads a lot of books.

OR
3.a) Obtain a principal conjunctive normal form of each of the following formulas:
i) $(\neg P \rightarrow R) \wedge(Q \leftrightarrow P)$
ii) $P \rightarrow(P \wedge(Q \rightarrow P))$
b) Show that $(x)(P(x) \rightarrow Q(x)) \wedge(x)(Q(x) \rightarrow R(x)) \Rightarrow(x)(P(x) \rightarrow R(x))$
4.a) Let $X=\{1,2, \ldots, 7\}$ and $R=\{(x, y) \mid x-y$ is divisible by 3$\}$. Show that R is an equivalence relation. Draw the graph of R .
b) Show that in a group $(G, *)$, if for any a, b $\in \mathrm{G},\left(a^{*} b\right)^{2}=a^{2} * b^{2}$, then $\left(G,{ }^{*}\right)$ must be abelian.

OR

5.a) Let $f(x)=x+2, g(x)=x-2$, and $h(x)=3 x$ for $x \in R$, where R is the set of real numbers. Find $g \circ f, f \circ g, f \circ f, g \circ g, f \circ h \circ g$.
b) Find all the subgroups of $\left(Z_{12},+_{12}\right)$ and $\left(Z_{7}^{*}, x_{7}\right)$
6.a) How many ways are there to distribute 10 balls into 6 boxes with atmost 4 balls in the first 2 boxes if:
i) The balls are indistinguishable
ii) The balls are distinguishable
b) Verify that $C(n+3, r)-3 C(n+2, r)+3 C(n+1, r)-C(n, r)=C(n, r-3)$

OR

7.a) Find the number of integral solutions for the following:
i) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=10$ where $x_{i} \geq 0$
ii) $x_{1}+x_{2}+x_{3}+x_{4}=50$, where $x_{1} \geq-4, \boldsymbol{x}_{2} \geq 7, \boldsymbol{x}_{3} \geq-14, x_{4} \geq 10$
b) Determine the coefficient of x^{5} in $\left(a+b x+c x^{2}\right)^{10}$ and $(x-7 y)^{15}$.
8.a) Build a generating function for $a_{r}=$ the number of integral solutions to the equation $x_{1}+x_{2}+x_{3}=r$
i) $0 \leq x_{i} \leq 3$ for each i
ii) $2 \leq x_{i} \leq 5$ for each i
b) Write a generating function for a_{n}, the number of ways of obtaining the sum n when tossing 9 distinguishable dice. Then find a_{25}.

OR

9.a) Solve the following recurrence relations using the characteristic roots:
i) $a_{n}-3 a_{n-1}-4 a_{n-2}=0$ for $n \geq 2$ and $a_{0}=a_{1}=1$.
ii) $a_{n}-4 a_{n-1}-12 a_{n-2}=0$ for $n \geq 2$ and $a_{0}=4, a_{1}=16 / 3$.
b) Write the general form of a particular solution a_{n}^{P} to the following recurrence relations:
i) $a_{n}-7 a_{n-1}+12 a_{n-2}=n$
ii) $a_{n}-7 a_{n-1}+12 a_{n-2}=2^{n}$
10.a) Demonstrate with an example breadth-first search algorithm.
b) Are the graphs shown below isomorphic? Justify your answer.

OR

11.a) Obtain the minimal spanning tree for the following graph.

b) Draw a full regular tree of degree 2 and height 3 .

