www.FirstRanker.com
Code No: 821AA
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
MCA I Semester Examinations, January - 2018
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
Time: 3hrs
Max.Marks:75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

1.a) What are rules of the Well Formed Formulas?
5×5 Marks $=25$
b) Explain Abelian group with example.
c) State and prove binomial theorem.
d) Explain generating function.[5]
e) When two graphs are said to be isomorphic? Explain with an example.

PART - B

5×10 Marks $=50$
2. Derive the following using CP rule if necessary

$$
\begin{equation*}
\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{~S}) \Rightarrow \mathrm{P} \rightarrow \underset{\text { OR }}{(\mathrm{Q} \rightarrow \mathrm{~S})} \tag{10}
\end{equation*}
$$

3. Explain in detail about the Logical Connectives with Examples.
4. Draw the Hasse diagram of $(p(S), \leq)$, Where $p(S)$ is power set of the set $S=\{a, b, c\} .[10]$
OR
5. Define a semi group and Monoid. Give an example of a Monoid which is not a group. Justify your answer.
6. State and prove principle of inclusion and exclusion of three variables.

OR

7. Answer the following:
a) In how many ways can six men and four women sit in a row?
b) In how many ways can they sit in a row if all the men sit together?
c) In how many ways can they sit in a row if just the women sit together?
d) In how many ways can they sit in a row if men sit together?
8. Find the particular solution of the recurrence relation $a_{n+2}-4 a_{n+1}+4 a_{n}=2^{n}$.

OR

9. Solve the recurrence relation $a_{r}-5 a_{r-1}=3, r \geq 1$ with the boundary conditions $\mathrm{a}_{0}=1$ using generating functions.
10. Write the Kruskal's algorithm and find minimal spanning tree of the weighted graph shown below.

11.a) A complete binary tree has 25 leaves. How many vertices does it have?
b) Explain about the following
i) Eulerian Graph
ii) Chromatic number.
