www.FirstRanker.com
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYD.Firstranke
MCA I Semester Examinations, April/May - 2019
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
Time: 3hrs
Max.Marks:60
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 8 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

$$
5 \times 4 \text { Marks }=20
$$

1.a) Give the converse, contrapositive and inverse of the following statement: The hut will destroy if there is a cyclone.
b) Define the terms: Equivalence relation, Partially ordered relation and Totally ordered relation. Give examples for each.
c) How many integers between 1 and 1000 inclusive have the sum of the digits equal to 7 .
d) Solve the recurrence relation $\mathrm{a}_{\mathrm{n}}=\mathrm{na}_{\mathrm{n}-1}$ for $\mathrm{n} \geq 1$, given that $\mathrm{a}_{0}=1$.
e) What is a Hamiltonian graph? Discuss briefly.

PART - B

$$
5 \times 8 \text { Marks }=40
$$

2.a) Show that $(P \rightarrow S)$ can be derived from the premises $ך P \vee Q, \neg Q \vee R, R \rightarrow S$ using $C P$ rule.
b) Obtain the PCNF of the $(\mathrm{P} \rightarrow(\mathrm{Q} \wedge \mathrm{R})) \wedge(\neg \mathrm{P} \rightarrow(\neg \mathrm{Q} \wedge \neg \mathrm{R}))$.

OR

3.a) Show that $(x)(p(x) \vee Q(x)) \Rightarrow(x) p(x) \vee \exists(x) Q(x)$.
b) Use truth tables to establish whether the following statement forms a tautology or a contradiction or neither. $\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})$.
4. Define equivalence classes. Let Z be the set of integers and Let R be the relation called "congruence modulo 3 " defined by $\mathrm{R}=\{\langle\mathrm{x}, \mathrm{y}\rangle / \mathrm{x} \in \mathrm{Z} \wedge \mathrm{y} \in \mathrm{Z} \wedge$ ($\mathrm{x}-\mathrm{y}$) is divisible by $3\}$. Determine the equivalence classes generated by the elements of Z .

OR

5.a) Draw the Hasse diagram for the Poset. $\langle\{2,4,5,10,12,20,25\}, /\rangle$.
b) Let $\mathrm{R}=\{(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{e}),(\mathrm{d}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{e}, \mathrm{c})\}$ be a relation on the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$. Find the transitive closure of the relation R.
6.a) What is the coefficient of $x^{2} y^{5}$ in $(2 x-9 y)^{10}$?
b) How many 6 digit numbers without repetition of digits are there such that the digits are all non-zero and 1 and 2 do not appear consequently in either order?

OR
7. State and explain Multinomial theorem with an example illustration.
8. Solve the recurrence relation $a_{n}-6 a_{n-1}+9 a_{n-2}=0$ where $a_{0}=1$ and $a_{1}=6$.

OR

9. Using generating function, solve the $y_{n+2}-4 y_{n+1}+3 y n=0$, given $y_{0}=2, y_{1}=4$.
10. Explain prim's algorithms with suitable example.
11. State Graph coloring problem and describe its importance in computations.
