

www.FirstRanker.com www.FirstRanker.com JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

MCA I Semester Examinations, April/May - 2019

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Time: 3hrs Max.Marks:60

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 8 marks and may have a, b, c as sub questions.

PART - A

 5×4 Marks = 20

- 1.a) Give the converse, contrapositive and inverse of the following statement: The hut will destroy if there is a cyclone. [4] Define the terms: Equivalence relation, Partially ordered relation and Totally ordered b) relation. Give examples for each. How many integers between 1 and 1000 inclusive have the sum of the digits equal to 7. c)
 - d) Solve the recurrence relation $a_n = na_{n-1}$ for $n \ge 1$, given that $a_0 = 1$. [4]
 - What is a Hamiltonian graph? Discuss briefly. e)

PART - B

 $5 \times 8 \text{ Marks} = 40$

[4]

- Show that $(P \rightarrow S)$ can be derived from the premises $\neg P \lor Q$, $\neg Q \lor R$, $R \rightarrow S$ using CP 2.a)
 - Obtain the PCNF of the $(P \rightarrow (Q \land R)) \land (\gamma P \rightarrow (\gamma Q \land \gamma R))$. [4+4] b)
- Show that $(x) (p(x) \lor Q(x)) \Rightarrow (x) p(x) \lor \exists (x) Q(x)$. 3.a)
 - Use truth tables to establish whether the following statement forms a tautology b) or a contradiction or neither. P → (Q → R). [4+4]
- 4. Define equivalence classes. Let Z be the set of integers and Let R be the relation called "congruence modulo 3" defined by $R = \{ \langle x,y \rangle / x \in Z \land y \in Z \land (x-y) \text{ is divisible by } \}$ Determine the equivalence classes generated by the elements of Z.
 - Draw the Hasse diagram for the Poset. $\langle \{2,4,5,10,12,20,25\}, / \rangle$.
 - b) Let $R = \{ (b,c), (b,e), (c,e), (d,a), (c,b), (e,c) \}$ be a relation on the set $A = \{a,b,c,d,e\}$. Find the transitive closure of the relation R. [4+4]
- What is the coefficient of x^2y^5 in $(2x-9y)^{10}$? 6.a)
 - b) How many 6 digit numbers without repetition of digits are there such that the digits are all non-zero and 1 and 2 do not appear consequently in either order? [4+4]

- 7. State and explain Multinomial theorem with an example illustration. [8]
- 8. Solve the recurrence relation a_n - $6a_{n-1}$ + $9a_{n-2}$ = 0 where a_0 =1 and a_1 = 6. [8]
- Using generating function, solve the $y_{n+2} 4y_{n+1} + 3y_n = 0$, given $y_0 = 2$, $y_1 = 4$. 9. [8]
- 10. Explain prim's algorithms with suitable example. [8]

5.a)