

MBBS I (First) Professional Examination 2017-18

Course Code: MBS103 Paper ID: 0322208

Biochemistry -I

Time: 2 Hours 40 Minutes Max Marks: 40

Note: Attempt all questions. Draw proper diagrams to support

your answer.

Part 'B'

- Discuss the metabolism of Phenylalanine in detail. Enumerate the synthesis of different products obtained from Phenylalanine/Tyrosine.
- Explain the causes, clinical manifestations and laboratory 2. diagnosis of the following:
 - Type 2 Diabetes Mellitus
- Sickle-cell anemia
- Write in detail: 3

(5+5)

- Lipotropic Factors
- b)
- 4. Describe the following:

(5+5)

- Metabolic changes during starvation Factors affecting enzyme action

MBBS I (First) Professional Examination 2017-18

Roll No.	t.O.	Student's Name
Student's Signature		Invigilator's Signature
	5	
	CI	
Course Code:MBS103		Paper ID: 032220

Biochemistry - I

Part 'A'

Time: 20 Minutes Max Marks: 10

- Attempt all questions and return this part of the question paper to the invigilator after 20 Minutes.
- Please tick (1) correct one only. Cutting, overwriting or any other marking are not allowed.
 For answering please use Ball-pen only.
- Which of the following is an epimeric pair:
 - a) Glucose & maltose Glucose & Fructose b)
 - Glucose & mannose c)
 - Glucose & ribose
 - d)
- 0.2 G-proteins act as: Hormone carriers
 - b. Hormone receptors
 - Signal transducers
 - Second messengers
- Allopurinol is a competitive inhibitor of 0.3
 - Dihydrofolate reductase
 - Xanthine oxidase b)
 - Carbonic anhydrase
 - d) Acetylcholinesterase
- Cyanide inhibits phosphorylation at: Q.4
 - Site I
 - b) Site II Site III
 - c)
 - d) Site IV
- Factty liver is caused due to accumulation

 - a) Fatty acids
 - b) Cholesterol
 - Phospholipids c) Triacylglycerol
- Aspirin and indomethacin inhibit: Q.6 Phospholipase A₁

- b) Phospholipase A2
- Cyclo-oxygenase c) d)
- Lipo-oxygenase
- Primary structure of a protein is broken by:
 - Heat a)
 - Ammonium sulphate

 - d) All of the above
- Which of the following nitrogenous base is absent from DNA:
 - a) Uracil
 - Thymine Adenine
 - d) Guanine
- Q.9 Following myocardial infarction, the last serum enzyme to return to normal is:
 - Creatine kinase
 - b) Aspartate transaminase
 - Alanine transaminase c)
 - Lactate dehydrogenase
- Q.10 Glycine is required for the formation of all of the following except:
 - Creatine a)
 - b) Porphyrins
 - Pyrimidines d) Glutathione
- Q.11 Lipogenesis is decreased in all the following except:

www.FirstRanker.com

- Restricted caloric intake a)
- b) High fat intake
- c) Deficiency of insulin
- d) High carbohydrate intake
- Q.12 Free glycerol cannot be used for triglyceride synthesis in:
 - a) Liver
 - b) Kidney
 - c) Intestine
 - d) Adipose tissue
- Q.13 Hypocholesterolemia can occur in:
 - Hyperthyroidism
 - b) Nephrotic syndrome
 - Obstructive jaundice c)
 - Diabetes Mellitus d)
- Q.14 Congenital absence ornithine transcarbamoylase causes:
 - Hyperammonemia type I a)
 - b) Hyperammonemia type II
 - Hyperornithinemia c)
 - d) Citrullinemia
- Q.15 The nitrogen atoms of pyrimidine nucleus:
 - Glutamate a)
 - b) Glutamine
 - Glutamate and Aspartate c)
 - d) Glutamine and Aspartate
- Q.16 Kernicterus can occur in:
 - Retention hyperbilirubinemia a)
 - b) Regurgitation hyperbilirubinemia
 - c) Both of the above
 - None of the above d)
- Q.17 Rate limiting step fo glycolysis is catalyzed
 - by:
 - Glucokinase a)
 - Pyruvate kinase b)
 - Phosphofructokinase-I c)
 - Phosphohexose isomerase d)
- Q.18 Α coenzyme present in muscle
 - phosphorylase is:
 - NAD a) Pyridoxal phosphate b)
 - Thiamin pyrophosphate c)
 - d) Coenzyme A
- Q.19 Urinary excretion of homogentisic acid is increased in:

- Tyrosinemia
- b) Alkaptonuria
- c) Phenylketonuria
- d) Homocystinuria
- Q.20 Ciprofloxacin inhibits the synthesis of:
 - DNA in prokaryotes a)
 - DNA in prokaryotes and eukaryotes
 - RNA in prokaryotes

itanker com

RNA in prokaryotes and eukaryotes d)

