

www.FirstRanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA II Semester Examinations, April/May - 2019

DATA STRUCTURES AND ALGORITHMS		
Time:	3hrs Max,Mar	rks:75
Note:	This question paper contains two parts A and B.	
	Part A is compulsory which carries 25 marks. Answer all questions in Part A consists of 5 Units. Answer any one full question from each unit. Each question 10 marks and may have a, b, c as sub questions.	
PART - A		
$5 \times 5 \text{ Marks} = 25$		
1.a)	Explain the operations of Queue with an example.	[5]
b)	What are the applications of Heap?	[5]
c)	Differentiate between Bubble sort and Insertion sort with an example.	[5]
d)	What are the properties of Red-Black tree?	[5]
e)	Write the flow chart of KMP.	[5]
	PART - B	
5 × 10 Marks = 50		
2.	Write an algorithm to find the reverse of a given number and also its complexit	
	same.	[10]
2	OR	ad List
3.	Write an algorithm to find the number of occurrences of All Elements in a Link	[10]
		[IU]
4.	Explain how to represent the graph in the memory with an example.	[10]
٠.	OR	[10]
5.a)	Explain the realization of a priority Queue using heap.	
b)	Write an algorithm of DFS.	[5+5]
,		. ,
6.	Write an algorithm of Quick Sort.	[10]
	OR	
7.	Insert the following list of elements into the Hash Table by using Quadratic Probing	
	(Size of Hash table is 10) 44, 15, 60, 24, 66, 30, 21, 18.	[10]
8.	Construct the AVL tree of the following list of elements 65, 89, 10, 5, 43,	
	O.D.	[10]
9.	OR Write an algorithm to delete an element from the B-tree.	[10]
9.	write an algorithm to delete an element from the B-tree.	[10]
10.	Consider $n = 4$ and the identifier set $(a1,a2,a3,a4) = (do, if, int, while)$. The values for p's and q's are given as p $(1:4) = (3,3,1,1)$ and $q(0:4) = (2,3,1,1,1)$. Construct the optimal	
	binary search tree.	[10]
	OR	
11.	Apply the all- pairs shortest algorithm to the weighted graph whose adjacency ma	trix is:

3

0

0 2 ∞ 1 8 6 0 3 2 ∞ oo oo 0 4 oo ∞ ∞ 2 0

3 ∞ ∞ ∞