

Code No: 821AJ www.FirstRanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA II Semester Examinations, January - 2018 OPERATIONS RESEARCH

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

5 × 5 Marks = 25

1.a) Explain the limitations of operations Research. [5]
b) Give and explain Mathematical model of "Assignment problem". [5]
c) Explain the usefulness of sequencing modes. [5]
d) What is dynamic programming approach? Explain. [5]

e) What is EOQ(Economic order quantity)? What is its significance? [5]

PART - B

 $5 \times 10 \text{ Marks} = 50$

2.a) Using two phase method solve the LPP:

Miximize

$$p = 2x_1 + 4x_2 + 3x_3$$

$$s.t. \ 3x_1 + 4x_2 + 3x_3 \le 3600$$

$$2x_1 + x_2 + 3x_3 \le 2400$$

$$x_1 + 3x_2 + 3x_3 \le 4800$$
 and

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Explain the concept of unbound solution.

[5+5]

With the Big-M method

[10]

Maximize

$$z = 3x_1 - x_2$$

$$s.t. 2x_1 + x_2 \ge 2$$

$$x_1 + 3x_2 \le 3$$

$$x_2 \le 4$$
 and

$$x_1, x_2 \ge 0$$

 Find the Initial Basic Feasible solution of the Transportation problem where cost matrix is given below

matrix is given seron								
		Destination				Supply		
		A	В	C	D			
origin	I	1	5	3	3	34		
	П	3	3	1	2	15		
	III	0	2	2	3	12		
	IV	2	7	2	4	19		
Demand		21	25	17	17			

www.FirstRanker.com

www.FirstRanker.com

5.	Explain Hungarian method for optimal solution through an example.	[10]
-		

 There are 4 jobs each of which has to go through the machines M₁, M₂, M₃, M₄, M₅, and M₆, in order Processing Times are as given below.

	Machine							
		M_1	M_2	M_3	M_4	M_5	M_6	
Job	A	20	10	9	4	12	27	
	В	19	8	11	8	10	21	
	C	13	7	10	7	9	17	
	D	22	6	5	6	10	14	

Determine a sequence of these four jobs which minimizes the total elapsed time T. [10]

OR

- Illustrate any two Replacement models with numerical examples. [10]
- 8. Solve using dynamic programming approach.

Maximize

$$z = 8x_1 + 7x_2$$

$$s.t. 2x_1 + x_2 \le 8$$

$$5x_1 + 2x_2 \le 15$$
 and

$$x_1, x_2 \ge 0$$

[10]

[5+5]

OR

- 9.a) Explain minimax method of optimal strategies.
 - Explain the term competitive games, saddle point, value of the game with examples. [5+5]
- Explain an inventory model where demand rate is uniform and production rate is uniform. Illustrate your answer with a numerical example. [10]

OR

- 11. Explain the following Models
 - a) $\{(M/M|1): (\infty/FCFS)\}$
 - b) {(M/M|1):(N/FCFS)}

Illustrate your answers with numerical examples.

---00000----