MCA II Semester Examinations, January - 2018
 OPERATIONS RESEARCH

Time: 3 Hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

> PART - A
5×5 Marks $=25$
1.a) Explain the limitations of operations Research.
b) Give and explain Mathematical model of "Assignment problem".
c) Explain the usefulness of sequencing modes.
d) What is dynamic programming approach? Explain.
e) What is EOQ(Economic order quantity)? What is its significance?

PART - B

$$
5 \times 10 \text { Marks }=50
$$

2.a) Using two phase method solve the LPP:

Miximize
$p=2 x_{1}+4 x_{2}+3 x_{3}$
s.t. $3 x_{1}+4 x_{2}+3 x_{3} \leq 3600$
$2 x_{1}+x_{2}+3 x_{3} \leq 2400$
$x_{1}+3 x_{2}+3 x_{3} \leq 4800$ and
$x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$
b) Explain the concept of unbound solution.
3. With the Big-M method

Maximize

OR

$$
\begin{align*}
& z=3 x_{1}-x_{2} \tag{10}\\
& \text { s.t. } 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 3 \\
& x_{2} \leq 4 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

$$
12
$$

4. Find the Initial Basic Feasible solution of the Transportation problem where cost matrix is given below
[10]

		Destination				Supply
		A	B	C	D	
origin	I	1	5	3	3	34
	II	3	3	1	2	15
	III	0	2	2	3	12
	IV	2	7	2	17	19
Demand		21	25	17	17	

5. Explain Hungarian method for optimal solution through an example.
6. There are 4 jobs each of which has to go through the machines $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}$, M_{5}, and M_{6}, in order Processing Times are as given below.

	Machine							
		\mathbf{M}_{1}	\mathbf{M}_{2}	\mathbf{M}_{3}	\mathbf{M}_{4}	\mathbf{M}_{5}	\mathbf{M}_{6}	
Job	A	20	10	9	4	12	27	
	B	19	8	11	8	10	21	
	C	13	7	10	7	9	17	
	D	22	6	5	6	10	14	

Determine a sequence of these four jobs which minimizes the total elapsed time T.

OR

7. Illustrate any two Replacement models with numerical examples.
8. Solve using dynamic programming approach.

Maximize
$z=8 x_{1}+7 x_{2}$
s.t. $2 x_{1}+x_{2} \leq 8$
$5 x_{1}+2 x_{2} \leq 15$ and
$x_{1}, x_{2} \geq 0$

OR

9.a) Explain minimax method of optimal strategies.
b) Explain the term competitive games, saddle point, value of the game with examples.
10. Explain an inventory model where demand rate is uniform and production rate is uniform. Illustrate your answer with a numerical example.

OR

11. Explain the following Models
a) $\{(M / M \mid 1):(\infty / F C F S)\}$
b) $\{(M / M \mid 1):(N / F C F S)\}$

Illustrate your answers with numerical examples.

