

Code No: 821AJ

www.FirstRanker.com

www.FirstRankel.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA II Semester Examinations, January - 2018 OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 75

[5]

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

- 5 × 5 Marks = 251.a)Explain the limitations of operations Research.[5]b)Give and explain Mathematical model of "Assignment problem".[5]c)Explain the usefulness of sequencing modes.[5]
 - d) What is dynamic programming approach? Explain.
 - e) What is EOQ(Economic order quantity)? What is its significance? [5]

PART - B

- 5×10 Marks = 50 2.a) Using two phase method solve the LPP: Miximize $p = 2x_1 + 4x_2 + 3x_3$ ter com *s.t.* $3x_1 + 4x_2 + 3x_3 \le 3600$ $2x_1 + x_2 + 3x_3 \le 2400$ $x_1 + 3x_2 + 3x_3 \le 4800$ and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ Explain the concept of unbound solution. b) [5+5]OR With the Big-M method 3. [10] Maximize $x_{1} - x_{2}$ s.t. $2x_{1} + x_{2} \ge 2$ $x_{1} + 3x_{2}$ $x_1 + 3x_2 \le 3$ $x_2 \leq 4$ and $x_1, x_2 \ge 0$
- 4. Find the Initial Basic Feasible solution of the Transportation problem where cost matrix is given below [10]

maarin 15 g	,		Destination				
		А	В	С	D	Supply	
origin	Ι	1	5	3	3	34	
	II	3	3	1	2	15	
	III	0	2	2	3	12	
	IV	2	7	2	4	19	
Demand		21	25	17	17		

www.FirstRanker.com

- 5. Explain Hungarian method for optimal solution through an example. [10]
- 6. There are 4 jobs each of which has to go through the machines M_1 , M_2 , M_3 , M_4 , M_5 , and M_6 , in order Processing Times are as given below.

	Machine									
		M_1	M_2	M ₃	M_4	M ₅	M ₆			
Job	А	20	10	9	4	12	27			
	В	19	8	11	8	10	21			
	С	13	7	10	7	9	17			
	D	22	6	5	6	10	14			

Determine a sequence of these four jobs which minimizes the total elapsed time T. [10]

OR

- 7. Illustrate any two Replacement models with numerical examples. [10]
- 8. Solve using dynamic programming approach. Maximize $z = 8x_1 + 7x_2$ $s.t. 2x_1 + x_2 \le 8$ $5x_1 + 2x_2 \le 15$ and $x_1, x_2 \ge 0$

[10]

OR

- 9.a) Explain minimax method of optimal strategies.
- b) Explain the term competitive games, saddle point, value of the game with examples. [5+5]
- 10. Explain an inventory model where demand rate is uniform and production rate is uniform. Illustrate your answer with a numerical example. [10]

OR

11. Explain the following Models

FirstRanker.com

a)
$$\left\{ \left(M/M | 1 \right) : \left(\infty/FCFS \right) \right\}$$

b) $\{(M/M|1): (N/FCFS)\}$

Illustrate your answers with numerical examples. [5+5]

---00000----