

www.FirstRanker.com

www.FirstRanker.com

R13

Code No: 812AG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA II Semester Examinations, April/May - 2019 OPERATING SYSTEMS

Time: 3 Hours Max. Marks: 60

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 8 marks and may have a, b, c as sub questions.

PART - A

1.a) Explain about the virtual memory. 5 × 4 Marks = 20

- b) Explain the process state transition diagram with neat sketch. [4]
- c) Explain the concept of thrashing and why thrashing should be avoided in a system? [4]
- d) List the common file types along with their extensions and describe each file type? [4]
- e) Describe the conditions under which a deadlock situation may arise? [4]

PART - B

 5×8 Marks = 40

- 2.a) State and explain various types of computer systems?
 - b) Distinguish between multiprogramming, multitasking and multiprocessing? [4+4]

OR

- Describe the functionalities listed below?
 - a) Batch programming b) Virtual Memory c) Time sharing [8]
- 4.a) Describe dining-philosophers problem? Derive an algorithm to solve the problem using semaphores?
 - b) State the requirements that a solution to the critical section problem must satisfy? [4+4]
- Consider the following set of processes with the length of the CPU burst time given in milliseconds

Process Process	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
D5	5	2

The processes are assumed to have arrived in the order p1, p2, p3, p4, p5 all at time 0.

- a) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, anon pre-emptive priority (a smaller priority number implies a higher priority) and RR (quantum=1)scheduling.
- b) What is the turnaround time of each process for each of the scheduling algorithms in part?
- c) What is the waiting time of each process for each of the scheduling algorithms in part? Which of the schedules in part a results in the minimal average waiting time? [8]

www.FirstRanker.com

www.FirstRanker.com

 Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in order)? Explain which algorithm makes the most efficient use of memory?

OR

- 7.a) State and explain about virtual memory concept with neat diagram?
 - b) Explain the basic Scheme of page replacement and about the various page replacement strategies with examples? [4+4]
- 8.a) Explain about the structure of Directory.
 - b) Explain about the Free space management in file system.

[4+4]

- Explain the following in detail with respect to disk?
 - a) Seek time
 - b) Latency
 - c) Access time
 - d) Transfer time

[8]

- 10.a) List the implementation techniques of access matrix?
 - b) List any two example systems that implement capability-based protection?

[4+4]

OR

11. Consider the following snapshot of a system Answer the following questions using the banker's algorithm:

	Allocation	Max	Available
	ABCD	ABCD	A B C D
P1	0 0 1 3	0 0 1 2	1 5 2 0
P2	1 0 0 0	1 7 5 0	10,
P3	1 3 5 4	2 3 5 6	U.L.

- a) What is the content of matrix "Need"?
- b) Is the system in a safe state?
- c) If a request from process P1 arrives for (0, 4, 2, 0) can the request be granted immediately? [8]

---00O00----

