

www.FirstRanker.com

www.FirstRanker.com

R15

Code No: 823AA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA III Semester Examinations, August - 2017 **OPERATING SYSTEMS**

Time: 3hrs

Max.Marks:75

 5×5 Marks = 25

5 ... 10 Marilan 50

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

[5]

1.a)	What are system programs?	[5]
b)	Distinguish between a process and a thread.	[5]
c)	What are inverted page tables?	[5]
d)	Explain different file access methods.	[5]
e)	Explain how resource allocation graph is constructed.	[5]

PART - B

	5 × 10 Ma	$\mathbf{rks} = 50$			
2.	What are time shared and real time systems? Explain them in detail.	[10]			
2 a)	OR (
3.a)	What are operating system objectives and functions?	[5 5]			
b)	What are virtual machines? What is their significance?	[5+5]			
4.	What is critical section problem? Discuss the various hardware solutions to	o critical			
	section problem.	[10]			
	OR				
5.	Explain real time scheduling using an example.	[10]			
6.	Explain various LRU-Approximation page replacement algorithms.	[10]			
	OR				
7.	What is thrashing? Why does it occur? What are different methods to handle thrashing.				
		[10]			
8.	9 Define file Discuss contract file allocations destates Discuss the maxite and demonite of				
0.	Define file. Discuss various file allocation strategies. Discuss the merits and der	[10]			
	various file allocation strategies. OR	[10]			
0		1. /			
9.	What are the merits and demerits of tree structured directories and acyclic graph of structure?	[10]			

www.FirstRanker.com

10. Consider the following snapshot of a system:

	U 1	•	
	Allocation	max	available
	ABCD	A B C D	A B C D
P0	0 0 1 2	0 0 1 2	1520
P1	$1 \ 0 \ 0 \ 0$	1750	
P2	1 3 5 4	2 3 5 6	
P3	0 6 3 2	0 6 5 2	
P4	0 0 1 4	0656	

Answer following questions using banker's algorithm:

a) What is the content of the matrix need?

b) Is the system in a safe state?

c) If a request from a process p1 arrives for (0,4,2,0) can the request be granted immediately? [10]

OR

11. What is a deadlock? Discuss various deadlock prevention strategies. [10]

---00000----

www.firstRanker.com