

www.FirstRanker.com

www.FirstRanker.com R15

Code No: 823AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA III Semester Examinations, August - 2017 DATABASE MANAGEMENT SYSTEMS

Time: 3hrs Max.Marks:75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		$5 \times 5 \text{ Marks} = 25$
1.a)	Define instance and schema.	[5]
b)	What is domain integrity?	[5]
c)	Explain about inclusion dependency.	[5]
d)	What are recoverable schedules?	[5]
e)	Explain Clustered Indexes.	[5]

PART - B

 $5 \times 10 \text{ Marks} = 50$

2. Describe the Structure of DBMS with neat sketch.

s = 50 [10]

OR

- 3. Discuss about the Conceptual database Design with the ER Model.
- [10]

4. Consider the following schema for a company database

Employee (Name, SSN, Address, Sex, Salary, Dno)

Department (Dname, Dnumber, MGRSSN, MGRSTART Date)

Dept-Locations (Dnumber, Dlocations)

Project (Pname, Pnumber, Plocations, Dnum)

Works-On (ESSN, PNo, Hours)

Dependent (ESSN, Dependent-name, Sex, Bdate, Relationship)

Give the queries in SQL:

- a) Retrieve the names and address of employees who work for Department 10.
- b) List all the project names on which employee "Shyam" is working.
- c) Retrieve all employees in Dept. 5 whose salary is between 50,000 and 80,000.
- d) Retrieve the name of each employee who works on all the projects controlled by department number 2.
- e) Retrieve the names of employees who have no dependents. [10]

)R

5. Discuss about Complex integrity constraints in SQL. [10]

www.FirstRanker.com

www.FirstRanker.com

6.	Consider the relation R, which has attributes that hold schedules of courses and sections at a university:			
	R = {CourseNo, SecNo, OfferingDept, Credit-Hours, CourseLevel, InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStudents}.			
	Suppose that the following functional dependencies hold on R:			
	{CourseNo}→{OfferingDept, CreditHours, CourseLevel}			
{CourseNo, SecNo, Semester, Year} → {Days_Hours, RoomNo, NoOfStudent				
	InstructorSSN} {RoomNo, Days_Hours, Semester, Year} → [Instructorssn, CourseNo, SecNo}			
	Try to determine which sets of attributes form keys of R. How would you normal relation?	lize this [10]		
	OR			
7.	Write loss-less Boyce Codd Normal Form decomposition algorithm and explain with			
	example.	[10]		
0		F4 03		
8.	Explain the concept of Deadlock avoidance and prevention in detail. OR	[10]		
9.	Describe Validation-based protocols.	[10]		
10.	Write about the various levels of RAID with neat diagrams.	[10]		
	OR			
11.	Explain and Compare Extendible Hashing with Linear Hashing.	[10]		