Code No: 825AH
 Time: 3 Hours

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

MCA V Semester Examinations, April/May - 2019
SOFTWARE TESTING METHODOLOGIES

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

$$
5 \times 5 \text { Marks }=25
$$

1.a) State control flow graph and list independence and co-relation of variables and predicates.
b) Explain births and mergers in a transaction flow testing.
c) State functional homogeneity of bugs and define random testing.
d) Discuss an example of decision table testing for a financial application applied at the system level.
e) Define graph matrices and their applications.

> PART B

$$
5 \times 10 \text { Marks }=50
$$

2.a) What are control and sequence bugs? How they can be caught?
b) To what extent can testing be used to validate that the program is fit for its purpose. Discuss.

OR

3.a) Discuss that software testing will ensure the quality of a developed software.
b) Demonstrate the trade - off between quality assurance costs and manufacturing costs.
4.a) What is meant by statement testing and branch testing with an example.
b) State and explain various path selection rules.

OR
5.a) Demonstrate the transaction flows? Discuss their complications.
b) What are the strategies in dataflow.
6.a) Explain various properties related to Ugly-domains.
b) State and explain various restrictions at domain testing processes.

OR

7.a) Explain domain and explain different domain bugs.
b) Explain domain closure and define domain dimensionality.
8.a) Discuss Path Sums and Path Product.
b) Discuss in brief applications of paths.

OR

9.a) Define decision table and explain about don't care and impossible terms.
b) Compare condition stub and action stub and discuss three successive stages of canonical processors.
10. Demonstrate the steps involved in node reduction procedure. Illustrate all the steps with the help of neat labeled diagrams.

OR

11.a) Explain the powers of a matrix and define node reduction optimization.
b) Discuss matrix power and products and illustrate linked list representation of graph matrices.
[5+5]

