DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

End Semester Examination - Winter 2018

Course: B. Tech in Civil Engineering

Sem: III

Subject Name: Hydraulics I

Subject Code: BTCVC303

Max Marks: 60

Date: 05-12-2018

Duration: 3 Hr.

Instructions to the Students:

- 1. Solve all questions out of the following.
- 2. The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

		(Level/CO)	Marks
Q. 1	Solve Any Three of the following.		
A)	Explain the different applications of Fluid Mechanics in Civil Engineering.	CO2	04
B)	Define: Surface Tension and Bulk modulus. Give proper unit of each.	CO2	04
C)	Calculate the dynamic viscosity of oil, which is used for lubrication between a square	CO2	04
	plate of size $0.8 \ x \ 0.8 \ m^2$ and plane with angle of inclination 30° . The weight of		
	square plate is 294.5 N and it slides down the inclined plane with uniform velocity of		
	0.3m/s. The thickness of an oil film is 1.5mm.		
D)	When a pressure of 20.7MN/m² is applied to 100 liters of a liquid, it's volume	CO2	04
	decreases by 1 liter. Find the bulk modulus of the liquid and compressibility of		
	liquid.		
Q.2	Solve Any Two of the following.		
A)	Explain in detail with neat sketch – i) Differential U-Tube Manometer ii) Bourdon	CO2	06
	Tube Pressure Gauge		
B)	Prove that the center of pressure of a vertical plane surface is always below the center	CO3	06 (
	of gravity.		
C)	A wooden block of relative density 0.7 has width 15cm, depth 30cm and length	CO3	06
	150cm. it floats horizontally on the surface of water. Calculate the volume of water		
	displaced, depth of immersion and position of center of buoyancy. Also find the		
	metacentric height.		
Q.3	Solve the following.		
A)	Derive a three dimensional general continuity equitation in Cartesian co-ordinates.	CO3	06
B)	The velocity of component in a two dimensional flow are	CO3	06
	$u=2xy v=b^2+x^2-y^2$		
	i) Is the flow possible?		
	ii) Determine potential function.		
	iii) Determine corresponding stream function.	divie -	
		15	A

4452706A15C42C8064EA682DAF46F209

www.FirstRanker.com

www.FirstRanker.com

Q.4	Solve Any Two of the following	3.670	
A)	Derive an expression for point velocity distribution for laminar flow between two	CO3	06
	fixed parallel plates.		
B)	Explain with neat sketches the difference between hydro dynamically smooth &	CO2	06
	rough boundaries.		
C)	Explain Prandtl's Mixing Length Theory and Nikuradse's experiment.	CO2	06
Q. 5	Solve Any Two of the following.		
A)	Write short note on Non-dimensional numbers – i) Froude number ii) Weber	CO3	06
	Number iii) Reynold's Number.		
B)	Explain concept of equivalent pipe & Derive Dupit's equation in form	CO3	06
	$\frac{L}{D^5} = \frac{L_1}{D_1^5} + \frac{L_2}{D_2^5} + \frac{L_3}{D_3^5} + \cdots$		
C)	What is Siphon? Explain its working with neat sketch.	CO2	06
	*** 7		

4452706A15C42C8064EA682DAF46F209