

www.FirstRanker.com

www.FirstRanker.com

undefined

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE End Semester Examination - May 2019

Course: B. Tech

Sem: III

Subject Name: Engineering Mathematics-III

Subject Code: BTBSC301

Max Marks: 60 Date: 28-05-2019

Duration: 3 Hr.

Instructions to the Students:

- 1. Solve ANY FIVE questions out of the following.
- 2. The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.

	4. Assume suitable data wherever necessary and mention it clearly.		
		(Level/CO)	Mark
Q. 1	Attempt any three.		12
A)	Find $L\{f(t)\}\$, where $f(t) = t^2 e^{-3t} sinhat$	Understand	4
В)	Express $f(t)$ in terms of Heaviside's unit step function and hence find its Laplace transform where $f(t) = \begin{cases} cost, & 0 < t < \pi \\ sint, & t > \pi \end{cases}$	Understand	4
C)	Find $L\{f(t)\}$, where $f(t) = 2^t \int_0^t \frac{\sin 3u}{u} du$	Understand	4
D)	By using Laplace transform evaluate $\int_0^\infty e^{-t} \left(\frac{1-\cos 2t}{t}\right) dt$	Evaluation	4
Q. 2	Attempt the following.		12
A)	Using convolution theorem find $L^{-1}\left\{\frac{s^2}{(s^2+4)^2}\right\}$	Application	4
В)	Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \cot^{-1}\left(\frac{s+3}{2}\right)$	Application	4
C)	Using Laplace transform solve $y'' - 3y' + 2y = 12e^{-2t}$; $y(0) = 2$, $y'(0) = 6$	Application	4
	y (0) = 6		¥
Q. 3	Attempt any three.		12
A)	Express $f(t) = \begin{cases} 1, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral and hence	Evaluation	4
	deduce that $\int_0^\infty \frac{1-\cos\pi\lambda}{\lambda} \sin\pi\lambda \ d\lambda = \frac{\pi}{4}$.		
В)	Using Parseval's identity for cosine transform, prove that	Application	4
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\int_0^\infty \frac{\sin at}{t(a^2+t^2)} dt = \frac{\pi}{2} \left(\frac{1-e^{-a^2}}{a^2} \right)$		

15F8A8CAEE76137CDEFD5C570E00F2B9

www.FirstRanker.com

www.FirstRanker.com

undefined

C)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x \\ 1 - x \end{cases}$	x^2 , if $ x \le 1$. Hence prove Understand 4.0, if $ x > 1$	67.07.50
	that $\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right) \cos \frac{x}{2} dx = -\frac{3\pi}{16}$		30

D) Find Fourier sine transform of
$$5e^{-2x} + 2e^{-5x}$$
 Understand

A) Form the partial differential equation by eliminating arbitrary function
$$f$$
 Synthesis from $f(x + y + z, x^2 + y^2 + z^2) = 0$

B) Solve
$$xz(z^2 + xy)p - yz(z^2 + xy)q = x^4$$
 Analysis 4

C) Find the temperature in a bar of length two units whose ends are kept at zero Application temperature and lateral surface insulated if the initial temperature is
$$\sin \frac{\pi x}{2} + 3 \sin \frac{5\pi x}{2}.$$

A) If the function
$$f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$$
 is analytic, Understand 4 find the values of the constants a, b, c and d .

B) If
$$f(z)$$
 is an analytic function with constant modulus, show that $f(z)$ is Understand 4 constant.

- C) Find the bilinear transformation which maps the points z = 0, -i, -1 into Understand 4 the points w = i, 1, 0.
- D) Prove that the function $u = e^x(x\cos y y\sin y)$ satisfies the Laplace's Synthesis equation. Also find the coresponding analytic function.

A) Evaluate
$$\oint_C \frac{z+4}{z^2+2z+5} dz$$
, where C is the circle $|z+1-i|=2$. Evaluation 6

B) Find the residues of
$$f(z) = \frac{\sin z}{z \cos z}$$
 at its poles inside the circle $|z| = 2$. Understand 6

C) Evaluate
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$$
, where C is the circle $|z| = 3$. Evaluation 6

*** End ***

