Subjt Code: R16MBA106

MBA - I Semester Regular Examinations, D-2018
 QUANTITATIVE ANALYSIS FOR BUSINESS DISIONS

Time: $\mathbf{3}$ hours
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory
Four Questions should be answered from Part-B, each question carries equal marks of 12.

PART-A (CASE STUDY)

$1 \times 12=12$

1. Solve the travelling salesman problem given by the following data :
$\mathrm{C} 12:$: 20, C13 = 4, c14 10, c23 = 5, c34 = 6,
$\mathbf{C 2 5}=10, \mathrm{c} 35=6$, c45 $=20$, where $\mathrm{C}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{i}}$,
and there is no route between cities i and j if the value for $C_{\| 1}$ is not shown

PART-B

$4 X 12=48$
2. Calculate Rank Correlation Coefficient between X and Y series :

X	68	64	75	50	64	80	75	40	55	64
Y	62	58	68	45	81	60	68	48	50	70

3. Solve the following LPP by graphical method

Maximize $Z=5 x_{1}+7 \mathrm{x}_{2}$ st $\mathbf{x} 1+\mathrm{x}_{2}<=4,3 \times 1+8 \mathrm{x}_{2}<=24$, $\left.10 \mathrm{x}_{\mathrm{i}}+7 \mathrm{x} 2<=35(\mathrm{x} 1, \mathrm{x} 2\rangle=0\right)$
4. What is game theory? What are its limitations? Show how a game theory problem can be formulated as a linear programming problem.
5. Solve the following transportation problem having cost structure as

Demand	A	B	C	D	ai
1	10	18	11	7	20
2	9	12	14	6	40
3	8	9	12	10	35
bj	16	18	31	30	$\mathbf{9 5}$

6. An engineering company is offered a material handling equipment ' A '. ' A ' is priced at Rs. 60,000 including cost of installation and the costs for operation and maintenance are estimated to be Rs. 10,000 for each of the first 5 years, increasing every year by Rs. 3000 per year in the sixth and subsequent years. The company expts a return of $\mathbf{1 0 \%}$ on all its investments. What is the optimal replacement period?
7. For the projt represented by the network diagram, find the earliest and latest times, given the following data :

Task	$\mathbf{1 - 2}$	$\mathbf{1 - 3}$	$\mathbf{1 - 4}$	$\mathbf{3 - 6}$	$\mathbf{2 - 5}$	$\mathbf{2 - 6}$	$\mathbf{4 - 7}$	$\mathbf{5 - 7}$	$\mathbf{6 - 7}$	$\mathbf{7 - 8}$	$\mathbf{8 - 9}$
Least time to	4	5	8	2	4	6	8	5	3	5	6
Greates t Time tp	8	10	12	7	10	15	16	9	7	11	13
Most likely time t_{m}	5	7	11	3	7	9	12	6	5	8	9

