Q. 1 - Q. 5 carry one mark each.
Q. 1 The chairman requested the aggrieved shareholders to \qquad him.
(A) bare with
(B) bore with
(C) bear with
(D) bare
Q. 2 Identify the correct spelling out of the given options:
(A) Managable
(B) Manageable
(C) Mangaeble
(D) Managible
Q. 3 Pick the odd one out in the following:
$13,23,33,43,53$
(A) 23
(B) 33
(C) 43
(D) 53
Q. 4 R2D2 is a robot. R2D2 can repair aeroplanes. No other robot can repair aeroplanes.

Which of the following can be logically inferred from the above statements?
(A) R2D2 is a robot which can only repair aeroplanes.
(B) R2D2 is the only robot which can repair aeroplanes.
(C) R2D2 is a robot which can repair only aeroplanes.
(D) Only R2D2 is a robot.
Q. 5 If $|9 y-6|=3$, then $y^{2}-4 y / 3$ is \qquad
(A) 0
(B) $+1 / 3$
(C) $-1 / 3$
(D) undefined
Q. 6 - Q. 10 carry two marks each.
Q. 6 The following graph represents the installed capacity for cement production (in tonnes) and the actual production (in tonnes) of nine cement plants of a cement company. Capacity utilization of a plant is defined as ratio of actual production of cement to installed capacity. A plant with installed capacity of at least 200 tonnes is called a large plant and a plant with lesser capacity is called a small plant. The difference between total production of large plants and small plants, in tonnes is

Q. 7 A poll of students appearing for master engineering indicated that 60% of the students believed that mechanical engineering is a profen unsuitable for women. A research study on women with masters or higher degrees in me Caical engineering found that 99% of such women were successful in their professions.

Which of the following cand logically inferred from the above paragraph?
(A) Many students hisconceptions regarding various engineering disciplines.
(B) Men with advanced degrees in mechanical engineering believe women are well suited to be mechanical engineers.
(C) Mechanical engineering is a profession well suited for women with masters or higher degrees in mechanical engineering.
(D) The number of women pursuing higher degrees in mechanical engineering is small.
Q. 8 Sourya committee had proposed the establishment of Sourya Institutes of Technology (SITs) in line with Indian Institutes of Technology (IITs) to cater to the technological and industrial needs of a developing country.

Which of the following can be logically inferred from the above sentence?

Based on the proposal,
(i) In the initial years, SIT students will get degrees from IIT.
(ii) SITs will have a distinct national objective.
(iii) SIT like institutions can only be established in consultation with IIT
(iv) SITs will serve technological needs of a developing country.
(A) (iii) and (iv) only.
(B) (i) and (iv) only
(C) (ii) and (iv) only.
(D) (ii) and (iii) only.
Q. 9 Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts?
(A) 0.2508
(B) 0.2816
(C) 0.2934
(D) 0.6000
Q. 10 The numeral in the units position of $211^{870}+146^{127} \times 3^{424}$ is

END OF THE QUESTIOMPAPER

B : FLUID MECHANICS

Q. 1 - Q. 9 carry one mark each.

Q. 1 In the parallel-plate configuration shown, steady-flow of an incompressible Newtonian fluid is established by moving the top plate with a constant speed, $U_{0}=1 \mathrm{~m} / \mathrm{s}$. If the force required on the top plate to support this motion is 0.5 N per unit area (in m^{2}) of the plate then the viscosity of the fluid between the plates is \qquad $\mathrm{N}-\mathrm{s} / \mathrm{m}^{2}$

Q. 2 For a newly designed vehicle by some students, volume of fuel consumed per unit distance travelled $\left(q_{\mathrm{f}}\right.$ in $\left.\mathrm{m}^{3} / \mathrm{m}\right)$ depends upon the viscosity (μ) and density (ρ) of the fuel and, speed (U) and size (L) of the vehicle as
$q_{f}=C \frac{\rho U^{2} L}{\mu^{3}}$
where C is a constant. The dimensions of the constant C are
(A) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
(B) $\mathrm{M}^{2} \mathrm{~L}^{-1} \mathrm{~T}^{-1}$
(C) $\mathrm{M}^{2} \mathrm{~L}^{-5} \mathrm{~T}^{-1}$
(D) $\mathrm{M}^{-2} \mathrm{~L}^{1} \mathrm{~T}^{1}$
Q. 3 A semi-circular gate of radius 1 m is placed at the bottom of a water reservoir as shown in figure below. The hydrostatic force per unit width of the cylindrical gate in y-direction is \qquad kN . The gravitational acceleration, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Q. $4 \quad$ Velocity vector in m / s for a 2-D flow is given in Cartesian coordinate (x, y) as $\vec{V}=\left(\frac{x^{2}}{4} \hat{\imath}-\frac{x y}{2} \hat{\jmath}\right)$. Symbols bear usual meaning. At a point in the flow field, the x - and y-components of the acceleration vector are given as $1 \mathrm{~m} / \mathrm{s}^{2}$ and $-0.5 \mathrm{~m} / \mathrm{s}^{2}$, respectively. The velocity magnitude at that point is \qquad m / s.
Q. 5 If $\phi(x, y)$ is velocity potential and $\psi(x, y)$ is stream function for a 2-D, steady, incompressible and irrotational flow, which one of the followings is incorrect?
(A) $\left(\frac{d y}{d x}\right)_{\phi=\text { const. }}=-\frac{1}{\left(\frac{a y}{d x}\right)_{\psi=\text { const }}}$
(B) $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0$
(C) $\left(\frac{d y}{d x}\right)_{\phi=\text { const. }}=\frac{1}{\left(\frac{d y}{d x}\right)_{\psi=\text { const. }}}$
(D) $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$
Q. 6 The flow field shown over a bluff body has considerably curved streamlines. A student measures pressures at points A, B, C, and D and denotes them as $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}$, and P_{D} respectively. State which one of the following statements is true. The arrow indicates the freestream flow direction.

(A) $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$ and $\mathrm{P}_{\mathrm{C}}>\mathrm{P}_{\mathrm{D}}$
(B) $\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}}$ and $\mathrm{P}_{\mathrm{C}}>\mathrm{P}_{\mathrm{D}}$
(C) $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$ and $\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}$
(D) $\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}}$ and $\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}$
Q. $7 \quad$ A 2-D incompressible flow is defined by its velocity components in m / s as $u=-\frac{c y}{x^{2}+y^{2}}$ and $v=\frac{c x}{x^{2}+y^{2}}$. If the value of the constant c is equal to $0.1 \mathrm{~m}^{2} / \mathrm{s}$, the numerical value of vorticity at the point $x=1 \mathrm{~m}$ and $y=2 \mathrm{~m}$ is \qquad s^{-1}.
Q. 8 Two flow configurations are shown below for flow of incompressible, viscous flow. The inlet velocity for the diverging nozzle (Fig (i)) and free-stream velocity for flow past the bluff body (Fig(ii)) is constant. Points A and B are separation points and flow is laminar. The relation regarding velocity gradients at pôint A and B is $(y$ is the direction normal to the surface at the point of separation)

Fig (i)

Fig (ii)
(A) $\left.\left.\frac{\partial u}{\partial y}\right)_{A}=\frac{\partial u}{\partial y}\right)_{B}$
(B) $\left.\left.\frac{\partial u}{\partial y}\right)_{A}>\frac{\partial u}{\partial y}\right)_{B}$
(C) $\left.\left.\frac{\partial u}{\partial y}\right)_{A}<\frac{\partial u}{\partial y}\right)_{B}$
(D)) $\left.\left.\frac{\partial^{2} u}{\partial y^{2}}\right)_{A}=\frac{\partial^{2} u}{\partial y^{2}}\right)_{B}$
Q. 9 Consider a fully developed, steady, incompressible, 2-D, viscous channel flow with uniform suction and blowing velocity v_{0}, as shown in the figure given below. The centerline velocity of the channel is $10 \mathrm{~m} / \mathrm{s}$ along the x-direction. If the value of v_{0} at both the walls is $1 \mathrm{~m} / \mathrm{s}$, the value of the y component of velocity inside the flow field is \qquad m / s.

Q. 10 - Q. 22 carry two marks each.

Q. 10 Exhaust from a kitchen goes into the atmosphere through a tapered chimney as shown. The area of cross-section of chimney at location-1 is twice of that at location-2. The flow can be assumed to be inviscid with constant exhaust density of $1 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. If the steady, uniform exhaust velocity at location- 1 is $U=1 \mathrm{~m} / \mathrm{s}$, the pressure drop across the chimney is \qquad Pa .

Q. 11 A jet of diameter 20 mm and velocity $6 \mathrm{~m} / \mathrm{s}$ coming out of a water-tank standing on a frictionless cart hits a vane and gets deflected at an angle 45° as shown in the figure below. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Neglect all minor and viscous losses. If the cart remains stationary, the magnitude of tension in the supporting string connected to the wall is \qquad N .

Q. 12 A block is floating at the oil-water interface as shown. The density of oil is two-thirds of that of water. Given that the density of the block is $800 \mathrm{~kg} / \mathrm{m}^{3}$ and that of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, the fraction of the total height of block in oil is \qquad .

Q. 13 A horizontal pipe is feeding water into a reservoir from the top with a time-dependent volumetric flow-rate, $Q\left(\mathrm{~m}^{3} / \mathrm{h}\right)=1+0.1 \times t$ where t is time in hours. The area of the base of the reservoir is 0.5 m^{2}. Assuming that initially the reservoir was empty, the height of the water level in the reservoir after 60 minutes is \qquad m.
Q. 14 Velocity field of a 2-D steady flow is provided as $\vec{V}=c\left(x^{2}-y^{2}\right) \hat{\imath}-2 c x y \hat{y}$. The equation of the streamlines of this flow is
(A) $x^{2} y-\frac{y^{2}}{3}=$ Constant
(B) $x y^{2}-\frac{y^{2}}{3}=$ Constant
(C) $x y-\frac{y}{3}=$ Constant
(D) $x^{2} y-\frac{y^{5}}{3}=$ Constant
Q. 15 Velocity potential and stream function in polar coordinates (r, θ) for a potential flow over a cylinder with radius R is given as $\emptyset=U_{\infty}\left(r+\frac{R^{2}}{r}\right) \cos \theta$ and $\psi=U_{\infty}\left(r-\frac{R^{2}}{r}\right) \sin \theta$, respectively. Here, U_{∞} denotes uniform freestream velocity, and θ is measured counter clockwise as shown in the figure. How does the velocity magnitude, q, over the surface of the cylinder will vary?

(A) $q=2 U_{\infty} \cos \theta$
(B) $q=2 U_{\infty} \sin 2 \theta$
(C) $q=U_{\infty} \cos 2 \theta$
(D) $q=2 U_{\infty} \sin \theta$
Q. 16 Consider a laminar flow over a flat plate of length $L=1 \mathrm{~m}$. The boundary layer thickness at the end of the plate is δ_{w} for water, and δ_{a} for air for the same freestream velocity. If the kinematic viscosities of water and air are $1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and $1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, respectively, the numerical value of the ratio, $\frac{\delta_{w}}{\delta_{a}}$ is \qquad .

GATE 2016 Fluid Mechanics-XE-B
Q. 17 Prototype of a dam spillway (a structure used for controlled release of water from the dam) has characteristic length of 20 m and characteristic velocity of $2 \mathrm{~m} / \mathrm{s}$. A small model is constructed by keeping Froude number same for dynamic similarity between the prototype and the model. What is the minimum length-scale ratio between prototype and the model such that the minimum Reynolds' number for the model is 100 ? The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity is $10^{-3} \mathrm{~Pa}-\mathrm{s}$.
(A) 1.8×10^{-4}
(B) 1×10^{-4}
(C) 1.8×10^{-3}
(D) 9.1×10^{-4}
Q. 18 An orifice meter, having orifice diameter of $d=\frac{20}{\sqrt{\pi}} \mathrm{~mm}$ is placed in a water pipeline having flow rate, $Q_{\text {act }}=3 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$. The ratio of orifice diameter to pipe diameter is 0.6 . The contraction coefficient is also 0.6 . The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. If the pressure drop across the orifice plate is 43.5 kPa , the discharge co-efficient of the orifice meter at this flow Reynolds number is
\qquad -.
Q. 19 Consider the following figures shown below. The objects are marked as A1, A2, B1, B2 and C1, C2 and the flow directions over these objects are shown by the respective arrow placed to the left of the object. Freestream velocities are same for all the cases. Amongst these objects, A1, A2, B1 and C1 are having smooth surfaces while B2 and C2 are having rough surfaces. Reynolds number is such that flow over rough surfaces become turbulent and flow over smooth surfaces can be considered laminar. All the airfoils can be considered as thin slender airfoil. Among the statements (i) to (vi) made about the drag of these objects which is/are correct?
(i) Drag of object A1 is less than drag of object A2.
(ii) Drag of Object A1 and A2 are same.
(iii) Drag of Object B1 is more than drag of object B2.
(iv) Drag of object B2 is more than drag of object B1.
(v) Drag of Object C1 is more than drag of object C2.
(vi) Drag of object C 2 is more than drag of object C 1 .

(A) (i),(iii) \& (vi)
(B) (ii),(iii) \& (vi)
(C) (i),(iii) \& (v)
(D) (i),(iv) \& (vi)
Q. 20 Consider 2-D, steady, incompressible, fully developed flow of viscous, Newtonian fluid through two stationary parallel plates, in Cartesian co-ordinate (x, y, z) system. Assume plates are very long in x-direction, wide in z-direction (also there is no variation of velocity in z direction) and distance between them is $2 h$. The velocity in such a channel is given as $U=U_{\max }\left(1-\frac{y^{2}}{h^{2}}\right)$. The origin y $=$ 0 is located at the center between the plates. If $h=48 \mathrm{~mm}$ and $U_{\max }=100 \mathrm{~mm} / \mathrm{s}$, difference between values of stream functions passing through $y=0$ and $y=h / 2$ is \qquad $\mathrm{mm}^{2} / \mathrm{s}$.
Q. 21 A pump is used to deliver water to an overhead tank at a flow rate of $Q=4 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$. The pump adds 1.6 kW to water. If the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, the pump head added to the flow is \qquad m.
Q. 22 Water is discharged at atmospheric pressure from a large reservoir through a long pipe of diameter d and length L. The height of the free surface of the reservoir from the discharge point is h meters. The Darcy's friction factor of the pipe is 0.002 . Neglect the velocity inside the reservoir as the reservoir is very large. Given, $L=20 \mathrm{~m}, d=40 \mathrm{~mm}$, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and flow rate is $Q=4 \pi \times 10^{-3} m^{3} / \mathrm{s}$. Assume gravitational acceleration, $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The value of h is \qquad m.

END OF THE QUESTION PAPER

 GATE 2016 Fluid Mechanics-XE-B GATE 2016 Fluid Mechanics-XE-B