

\cap	1_	\cap	5	carry	one	mark	each
v.	\perp	\mathbf{v} .	\mathcal{O}	cally	UIIC	main	catil

- The chairman requested the aggrieved shareholders to Q.1
 - (A) bare with
- (B) bore with
- (C) bear with
- (D) bare

- Q.2 Identify the correct spelling out of the given options:
 - (A) Managable
- (B) Manageable
- (C) Mangaeble
- (D) Managible

Pick the odd one out in the following: Q.3

13, 23, 33, 43, 53

- (A) 23
- (C) 43
- (D) 53
- Q.4 R2D2 is a robot. R2D2 can repair aeroplanes. No other robot can repair aeroplanes.

Which of the following can be logically inferred from the above statements?

- (A) R2D2 is a robot which can only repair aeroplanes.
- (B) R2D2 is the only robot which can repair aeroplanes.
- (C) R2D2 is a robot which can repair only aeroplanes. WWW.FirstPanker.
- (D) Only R2D2 is a robot.
- If |9y-6| = 3, then $y^2 4y/3$ is Q.5
 - (A) 0

Q. 6 – Q. 10 carry two marks each.

Q.6 The following graph represents the installed capacity for cement production (in tonnes) and the actual production (in tonnes) of nine cement plants of a cement company. Capacity utilization of a plant is defined as ratio of actual production of cement to installed capacity. A plant with installed capacity of at least 200 tonnes is called a large plant and a plant with lesser capacity is called a small plant. The difference between total production of large plants and small plants, in tonnes is

Q.7 A poll of students appearing for masters in engineering indicated that 60 % of the students believed that mechanical engineering is a profession unsuitable for women. A research study on women with masters or higher degrees in mechanical engineering found that 99 % of such women were successful in their professions.

Which of the following can be logically inferred from the above paragraph?

- (A) Many students have misconceptions regarding various engineering disciplines.
- (B) Men with advanced degrees in mechanical engineering believe women are well suited to be mechanical engineers.
- (C) Mechanical engineering is a profession well suited for women with masters or higher degrees in mechanical engineering.
- (D) The number of women pursuing higher degrees in mechanical engineering is small.

www.FirstRanker.com

www.FirstRanker.com_{t-8}

Q.8 Sourya committee had proposed the establishment of Sourya Institutes of Technology (SITs) in line with Indian Institutes of Technology (IITs) to cater to the technological and industrial needs of a developing country.

Which of the following can be logically inferred from the above sentence?

Based on the proposal,

- (i) In the initial years, SIT students will get degrees from IIT.
- (ii) SITs will have a distinct national objective.
- (iii) SIT like institutions can only be established in consultation with IIT.
- (iv) SITs will serve technological needs of a developing country.
- (A) (iii) and (iv) only.

(B) (i) and (iv) only.

(C) (ii) and (iv) only.

- (D) (ii) and (iii) only.
- Q.9 Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts?
 - (A) 0.2508
- (B) 0.2816
- (C) 0.2934
- (D) 0.6000
- Q.10 The numeral in the units position of $211^{870} + 146^{127} \times 3^{424}$ is _____.

END OF THE QUESTION PAPER

C: Materials Science

Q. 1 – Q. 9 carry one mark each.

Q.1	Energy Dispersive Spectroscopy (EDS) in a typical scanning electron microscope enables elemental identification by collecting and examining which of the following:							
	(B) Back scattere(C) Characteristic	ectrons from the sample d electrons from the sample a X-rays from the sample attern from the sample	e					
Q.2	Which of the following rotational symmetry is forbidden in a perfectly periodic 3-dimensional lattice?							
	(A) 1-fold	(B) 3-fold	(C) 5-fold	(D) 6-fold				
Q.3	Which of the following thermodynamic properties shows a discontinuity during a second-order phase transition?							
	(A) Volume		(B) Enthalpy					
	(C) Entropy		(D) Heat capacity	(D) Heat capacity				
Q.4	Cross slip is easily promoted in metals having							
	(A) a low stacking	g fault energy.	(B) a low grain be	(B) a low grain boundary energy.				
	(C) a high stacking	ig fault energy.	(D) a high grain boundary energy.					
Q.5	For a typical metal at room temperature and atmospheric pressure, the Fermi energy is of the energy level for which the probability of occupancy is:							
	(A) 0	(B) 0.25	(C) 0.5	(D) 1				
Q.6	Number of elements in a tensor of rank 4 is							
Q.7	Which one of the following effects is the working principle of a thermocouple?							
	(A) Thomson	(B) Seebeck	(C) Peltier	(D) Meissner				
Q.8	At equilibrium, the maximum number of phases that can coexist in a ternary system at constant pressure is							
Q.9	Defect-free single crystal alumina (sapphire) is							
	(A) opaque and w	hite.	(B) transparent.					
	(C) translucent.		(D) opaque and b	lack.				

2/3

Q. 10 – Q. 22 carry two marks each.

Q.10	Match the following processes and the products obtained:						
	P: Mechanical attrition Q: Physical vapour deposition R: Injection moulding S: Sintering	 Thin films Plastics Nanoparticles Rails Carbide tools 					
	(A) P-1, Q-2, R-3, S-5 (C) P-4, Q-1, R-3, S-2	(B) P-3, Q-1, R-2, S-5 (D) P-3, Q-4, R-1, S-2					
Q.11	In a diffraction experiment, monochromatic X-rays of wavelength 1.54 \mathring{A} are used to examine a material with a BCC structure. If the lattice parameter is 4.1 \mathring{A} , the angular position θ of the first diffraction peak is degrees.						
Q.12	The yield strength of a ferritic steel increases from 120 MPa to 150 MPa when the grain size is decreased from 256 μm to 64 μm . When the grain size is further reduced to 16 μm , the expected yield strength is MPa.						
Q.13	A direct bandgap semiconductor has a bandgap of 1.8 eV. The threshold value of the wavelength BELOW which this material will absorb radiation is \mathring{A} . (Given: Planck's constant, $h = 6.626 \times 10^{-34}$ J s, the charge of an electron, $e = 1.6 \times 10^{-19}$ C, and speed of light, $c = 3 \times 10^8$ m s ⁻¹)						
Q.14	A half cell consisting of pure Ni immersed in an aqueous solution containing Ni ²⁺ ions of unknown concentration, is galvanically coupled with another half cell consisting of pure Cd immersed in a 1 M aqueous solution of Cd ²⁺ ions. The temperature is 25 °C and pressure is 1 atm. The standard electrode reduction potentials of Ni and Cd are -0.250 V and -0.403 V, respectively. The voltage of the cell is found to be zero. The concentration of Ni ²⁺ in the solution is × 10 ⁻⁶ M. (Given: Universal gas constant, $R = 8.31$ J mol ⁻¹ K ⁻¹ , Faraday's constant, $F = 96500$ C mol ⁻¹)						
Q.15	Match the type of magnetism given in Gr	roup 1 with the material given in Group 2:					
	Group 1 P: Ferromagnetic Q: Ferrimagnetic R: Antiferromagnetic S: Paramagnetic	Group 2 1: Nickel oxide 2: Sodium 3: Magnetite 4: Cobalt					
	(A) P-4, Q-3, R-1, S-2 (C) P-1, Q-2, R-4, S-3	(B) P-4, Q-1, R-3, S-2 (D) P-3, Q-2, R-1, S-4					
Q.16	will be one half the surface concentration	on wafer such that its concentration at a depth of 10^{-3} cm on. Given that the diffusion coefficient (<i>D</i>) of gallium in e time the silicon wafer should be heated in contact with s.					

www.FirstRanker.com

www.FirstRanker.com

- Q.17 A batch of spherical titania nanoparticles, uniform in size, has a specific surface area of 125 m 2 g $^{-1}$. If the density of titania is 4.23 g cm $^{-3}$, the diameter of the particles is ______ nm.
- Q.18 Given the probability distribution function

$$f(x) = \begin{cases} 0.25x \text{ for } 1 \le x \le 3\\ 0 \text{ otherwise} \end{cases}$$

The probability that the random variable x takes a value between 1 and $\sqrt{5}$ is _____

- Q.19 In the vulcanization of 50 g of natural rubber, 10 g of sulfur is added. Assuming the mer to S ratio is 1:1, the maximum percentage of cross-linked sites that could be connected is ______%. (Given: atomic weight of S is 32 amu and molecular weight of a mer of natural rubber is 68 amu)
- Q.20 Match the heat treatment process of steels given in Group 1 with the microstructural feature given in Group 2:

Group 1Group 2P: Quenching1: BainiteQ: Normalizing2: MartensiteR: Tempering3: PearliteS: Austempering4: Iron carbide

tempering 4: Iron carbide precipitates 5: Intermetallic precipitates

(A) P-2, Q-3, R-4, S-1

(B) P-3, Q-4, R-5, S-1

(C) P-4, Q-1, R-5, S-3

- (D) P-2, Q-5, R-4, S-3
- Q.21 In the photoelectric effect, electrons are ejected
 - (A) at all wavelengths, as long as the intensity of the incident radiation is above a threshold value.
 - (B) at all wavelengths, as long as the intensity of the incident radiation is below a threshold value.
 - (C) at all intensities, as long as the wavelength of the incident radiation is below a threshold value.
 - (D) at all intensities, as long as the wavelength of the incident radiation is above a threshold value.
- Q.22 The angle between [110] and [111] directions in the cubic system is ______ degrees.

END OF THE QUESTION PAPER