Q. 1 - Q. 5 carry one mark each.
Q. 1 The chairman requested the aggrieved shareholders to \qquad him.
(A) bare with
(B) bore with
(C) bear with
(D) bare
Q. 2 Identify the correct spelling out of the given options:
(A) Managable
(B) Manageable
(C) Mangaeble
(D) Managible
Q. 3 Pick the odd one out in the following:
$13,23,33,43,53$
(A) 23
(B) 33
(C) 43
(D) 53
Q. 4 R2D2 is a robot. R2D2 can repair aeroplanes. No other robot can repair aeroplanes.

Which of the following can be logically inferred from the above statements?
(A) R2D2 is a robot which can only repair aeroplanes.
(B) R2D2 is the only robot which can repair aeroplanes.
(C) R2D2 is a robot which can repair only aeroplanes.
(D) Only R2D2 is a robot.
Q. 5 If $|9 y-6|=3$, then $y^{2}-4 y / 3$ is \qquad
(A) 0
(B) $+1 / 3$
(C) $-1 / 3$
(D) undefined
Q. 6 - Q. 10 carry two marks each.
Q. 6 The following graph represents the installed capacity for cement production (in tonnes) and the actual production (in tonnes) of nine cement plants of a cement company. Capacity utilization of a plant is defined as ratio of actual production of cement to installed capacity. A plant with installed capacity of at least 200 tonnes is called a large plant and a plant with lesser capacity is called a small plant. The difference between total production of large plants and small plants, in tonnes is

Q. 7 A poll of students appearing for master engineering indicated that 60% of the students believed that mechanical engineering is a profen unsuitable for women. A research study on women with masters or higher degrees in me Caical engineering found that 99% of such women were successful in their professions.

Which of the following cand logically inferred from the above paragraph?
(A) Many students hisconceptions regarding various engineering disciplines.
(B) Men with advanced degrees in mechanical engineering believe women are well suited to be mechanical engineers.
(C) Mechanical engineering is a profession well suited for women with masters or higher degrees in mechanical engineering.
(D) The number of women pursuing higher degrees in mechanical engineering is small.
Q. 8 Sourya committee had proposed the establishment of Sourya Institutes of Technology (SITs) in line with Indian Institutes of Technology (IITs) to cater to the technological and industrial needs of a developing country.

Which of the following can be logically inferred from the above sentence?

Based on the proposal,
(i) In the initial years, SIT students will get degrees from IIT.
(ii) SITs will have a distinct national objective.
(iii) SIT like institutions can only be established in consultation with IIT
(iv) SITs will serve technological needs of a developing country.
(A) (iii) and (iv) only.
(B) (i) and (iv) only
(C) (ii) and (iv) only.
(D) (ii) and (iii) only.
Q. 9 Shaquille O' Neal is a 60% career free throw shooter, meaning that he successfully makes 60 free throws out of 100 attempts on average. What is the probability that he will successfully make exactly 6 free throws in 10 attempts?
(A) 0.2508
(B) 0.2816
(C) 0.2934
(D) 0.6000
Q. 10 The numeral in the units position of $211^{870}+146^{127} \times 3^{424}$ is

END OF THE QUESTIOMPAPER

E : THERMODYNAMICS

Notation used:

P - pressure, V - volume, T - temperature, S - entropy, H - enthalpy, U - internal energy, A - Helmholtz free energy, C_{p} - specific heat capacity at constant pressure.
Specific properties are designated by lower case symbols.

Useful data:

Universal gas constant $R=8.314 \mathrm{~kJ} /(\mathrm{kmol} . \mathrm{K})$
C_{p} of air $=1.005 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$
Ratio of ideal gas specific heats for air: $\gamma=1.4$
Molecular mass of hydrogen: $2 \mathrm{~kg} / \mathrm{kmol}$

Q. 1 - Q. 9 carry one mark each.

Q. 1 Which of the following thermodynamic properties is NOT an intensive property of a thermodynamic system:
(A) Pressure
(B) Temperature
(C) Density
(D) Volume
Q. 2 An U-tube manometer shows a height difference of z_{1} between the two columns for a known gauge pressure P_{1} (both z_{1} and P_{1} in appropriate units). If the height difference between the two columns is $2 z_{1}$, then the corresponding gauge pressure will be:
(A) $P_{1} / 2$
(B) $2 P_{1}$
(C) P_{1}
(D) $4 P_{1}$
Q. 3 Water vapour can be treated as an ideal gas,
(A) for all temperature and pressure
(B) for sufficiently low pressure, regardless of its temperature
(C) for very high pressure only
(D) for sufficiently low temperature, regardless of its pressure
Q. 4 The thermal efficiency of a Carnot engine is 0.5 . If the temperature of the cold reservoir is 300 K , then the temperature of the hot reservoir is:
(A) 600 K
(B) 1200 K
(C) 900 K
(D) 450 K
Q. 5 In a reversible, constant-pressure, non-flow process, heat input is given by
(A) change in internal energy
(B) change in enthalpy
(C) change in entropy
(D) work output
Q. 6 Moist air undergoes an adiabatic saturation process such that the relative humidity of air increases. For this process,
(A) Dry bulb temperature increases, specific humidity increases
(B) Dry bulb temperature increases, specific humidity decreases
(C) Dry bulb temperature decreases, specific humidity increases
(D) Dry bulb temperature decreases, specific humidity decreases
Q. 7 A steadily flowing ideal gas undergoes adiabatic throttling, where
T_{1} : temperature before throttling
T_{2} : temperature after throttling
Assuming no change in kinetic and potential energy due to throttling, which of the following is correct:
(A) $T_{1}=T_{2}$
(B) $T_{1}>T_{2}$
(C) $T_{1}<T_{2}$
(D) $T_{1}=\gamma T_{2}, \gamma$: specific heat ratio
Q. 8 For irreversible heat transfer from a hot body to a cold body, if Δ denotes the property change of both hot and cold bodies (i.e. difference between its final and initial values), then
(A) $\Delta S=0$
(B) $\Delta U>0$
(C) $\Delta S<0$
(D) $\Delta S>0$
Q. 9 A closed system undergoes a cyclic process. For the net work done by the system on the surroundings, which of the following statements is FALSE:
(A) Net work is always zero
(B) Net work is $\oint P d V$ if the process is reversible
(C) Net work can be negative
(D) Net work can be positive

Q. 10 - Q. 22 carry two marks each.

Q. 10 Consider the following statements related to the second law of thermodynamics:
P. A cyclic heat engine cannot produce net work by exchanging heat only with one reservoir.
Q. The efficiency of a reversible heat engine is dependent on the nature and amount of working substance undergoing the cycle.
R. It is impossible to have a cyclic device which will produce no effect other than the transfer of heat from a cold body to a hot body.
S. It is impossible to have heat engines operating between a heat source and sink to have a lower efficiency than that of a reversible heat engine operating between the same source and sink.

For which of the following options, BOTH the statements are inconsistent with the second law of thermodynamics:
(A) P and R
(B) P and Q
(C) R and S
(D) Q and S
Q. 11 Consider the following statements related to air-standard Otto, Diesel, and Brayton cycles:
P. Brayton cycle has at least one isentropic and one isobaric process.
Q. Otto cycle has at least one isentropic and one isochoric process.
R. Diesel cycle has at least one isentropic and one isothermal process.
S. At least one of the cycles has an isothermal process.

For which of the following options, BOTH the statements are consistent with the operation of the above cycles:
(A) P and R
(B) P and Q
(C) R and S
(D) P and S
Q. 12 Volumetric analysis of a hydrocarbon combustion product shows $8 \% \mathrm{CO}_{2}, 15 \% \mathrm{H}_{2} \mathrm{O}$ (vapour), $5.5 \% \mathrm{O}_{2}$ and $71.5 \% \mathrm{~N}_{2}$. The combustion product flows steadily through a heat exchanger at 200 kPa pressure. Assume each component in the mixture to be an ideal gas. In order to avoid the condensation of $\mathrm{H}_{2} \mathrm{O}$ in the heat exchanger, the minimum allowable temperature (in ${ }^{\circ} \mathrm{C}$) is \qquad .

$P(\mathrm{kPa})$	10	20	30	40	50
$T\left({ }^{\circ} \mathrm{C}\right)$	45.83	60.09	69.12	75.82	81.35

Q. 13 An equimolar mixture of two ideal gases (A, B) expands isentropically in a nozzle. The gas mixture enters the nozzle at $300 \mathrm{kPa}, 400 \mathrm{~K}$ and exits at 100 kPa . Assuming the mixture to be an ideal gas, the exit temperature of the gas mixture (in K) is \qquad -.

	Molar mass $(\mathrm{kg} / \mathrm{kmol})$	$C_{\mathrm{p}}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$
Gas A	28.013	1.04
Gas B	2.016	14.21

Q. 14 A rigid vessel of volume $10 \mathrm{~m}^{3}$ is filled with hydrogen at $25^{\circ} \mathrm{C}$ and 500 kPa . Due to leakage, some gas has escaped from the vessel until the pressure in the vessel drops down to 200 kPa , and the corresponding temperature of the gas inside the vessel is found to be $15^{\circ} \mathrm{C}$. The amount of gas leaked (in kg) from the vessel is \qquad .
Q. 15 A hot ideal gas ($C_{\mathrm{p}}=1.2 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$) steadily flows through a turbine with inlet and exit temperatures of 1500 K and 500 K respectively. The minimum mass flow rate (in kg / s) of the hot gas to achieve a power output of 12 MW is \qquad .
Q. 16 Air pressure inside a spherical balloon is proportional to its diameter. The balloon undergoes a reversible, isothermal, non-flow process. During the process, the balloon maintains its spherical shape, and the air inside the balloon consumes 2 kJ of heat. Initial air pressure inside the balloon was 120 kPa , while the initial balloon diameter was 20 cm . Assuming air to be an ideal gas, the final diameter of the balloon (in cm) is \qquad .
Q. 17 An air-standard diesel engine has a compression ratio of 18 (the ratio of the volume at the beginning of the compression process to that at the end of the compression process), and a cut-off ratio of 2 (the ratio of the volume at the end of the heat addition process to that at the beginning of the heat addition process). The thermal efficiency (in \%) of the engine is \qquad .
Q. 18 Compressed air, at 1 MPa pressure, 400 K temperature flows through a large pipe. An evacuated, insulated rigid tank of $0.5 \mathrm{~m}^{3}$ volume is connected to the pipe through a valve. The valve is opened to fill the tank and the valve closes automatically when the tank pressure reaches 1 MPa. Assuming ideal gas behaviour, the final air temperature in the tank (in K) is \qquad —.
Q. 19 A 40 kg metal block $\left(C_{\mathrm{p}}=0.5 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})\right)$ at $T=450^{\circ} \mathrm{C}$ is quenched in 150 kg oil ($C_{\mathrm{p}}=2.5 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$) at $T=25^{\circ} \mathrm{C}$. If the combined (metal block and oil) system is fully isolated from its surroundings, then the net change in the entropy (in kJ / K) of the combined system is
\qquad -.
Q. 20 For phase change from solid (sol) to liquid (liq) state, if the slope of the solid-liquid coexistence line in the $P-T$ diagram is negative, then:
(A) $v_{\text {liq }}<v_{\text {sol }}$
(B) $v_{\text {liq }}>v_{\text {sol }}$
(C) $s_{\text {liq }}<s_{\text {sol }}$
(D) $h_{\text {liq }}<h_{\text {sol }}$
Q. 21 A house-hold refrigerator operates under steady state condition between an evaporator temperature of 263 K and a condenser temperature of 323 K . The heat load to the refrigerator is 3 kW . The actual COP of the refrigerator is half of that of a Carnot refrigerator operating between the same condenser and evaporator temperatures. The power required (in kW) to run the refrigerator is
\qquad -.
Q. 22 The Maxwell relation that results from the expression for the Helmholtz free energy $A=U-T S$, is:
(A) $\left.\left.\frac{\partial T}{\partial v}\right)_{s}=-\frac{\partial P}{\partial s}\right)_{v}$
(B) $\left.\left.\frac{\partial T}{\partial P}\right)_{s}=\frac{\partial v}{\partial s}\right)_{P}$
(C) $\left.\left.\frac{\partial P}{\partial T}\right)_{v}=\frac{\partial s}{\partial v}\right)_{T}$
(D) $\left.\left.\frac{\partial v}{\partial T}\right)_{P}=-\frac{\partial s}{\partial P}\right)_{T}$

END OF THE QUESTION PAPER

