GATE_SOLUTION

GA

1. The strategies that the company uses to sell its products include house to house marketing.
2. The boat arrived at down
3. As the positions of book $R \& S$ are fixed. The books P, Q and T can be arranged in $3!=6$ ways
4. When he did not come home, she pictured him lying dead on the roadside somewhere.
5. Let t be the time taken by the machines when they work simultaneously.
$\therefore \frac{1}{t}=\frac{1}{4}+\frac{1}{2}$
$\therefore \frac{1}{t}=\frac{3}{4}$
$\therefore \mathrm{t}=\frac{4}{3}$
6. Given is the \% of illiterates

So $\%$ of literates will be

	F	M
2001	40%	50%
2011	60%	60%

And population distribution is
F M
2001 40\% 60\%

2011 50\% 50\%
Let total population in both the years as T .
So total literate in 2001 will be
$0.4 \times 0.4+0.5 \times 0.6=0.46 T$
And total literate in 2011 will be
$0.5 \times 0.6+0.5 \times 0.6=0.6 T$
\therefore Increase $=0.6 \mathrm{~T}-0.46 \mathrm{~T}=0.14 \mathrm{~T}$
$\therefore \%$ increase $=\frac{0.14 \mathrm{~T}}{0.46 \mathrm{~T}} \times 100=30.43$
7. Lohit Seema Rahul Mathew

Doctor Dancer Teacher Engineer
8. As first line says Indian history was written by British historians was extremely well documented and researched, but not always impartial.

So option (C) can be interfered from given passage.
9.

P

$$
8 \text { AM }
$$

Working
Start time

Breaks

Q 8 AM $\frac{210}{360} \times 12=8 \mathrm{hrs}$ 20 minute break (1 break)
= 20 minutes
\therefore paid working hours $=7$ hrs +8 hrs -30 minutes -20 minutes
$=14 \mathrm{hrs} 10$ minutes
\therefore Paid $=14 \times 200+\frac{10}{60} \times 200$
\therefore Paid $=2833.33$
\therefore Budget left $=3000-2833.33=166.67$
10. As it is given that R is sharing an office with T. So only option (D) is correct.

Electronics Engineering

1. A function $F(z)$ is said to be analytic at a point $z=a$ then $F(z)$ has a derivative at $z=a$ and derivative exists at each neighbouring point of $z=a$ in domain D.

$$
\begin{aligned}
& \mathrm{e}^{\frac{1}{z}} \text { at } \mathrm{z}=0 \longrightarrow \mathrm{e}^{\infty} \longrightarrow \text { No derivative } \\
& \ln \mathrm{z} \text { at } \mathrm{z}=0 \rightarrow \ln (0)=-\infty \rightarrow \text { does not exists } \\
& \frac{1}{1-\mathrm{z}} \text { at } \mathrm{z}=1 \rightarrow \frac{1}{0}=\infty \rightarrow \text { does not exists }
\end{aligned}
$$

But $\cos z$ exists for all values of z so it is analytic over the entire complex plane.
2. As no supply is connected hence fermi level will be constant.

In P type semiconductor Fermi level should be closer to EV.
In N type semiconductor Fermi level should be closer to EC.
In P^{++}type semiconductor due to large doping Fermi level enters into valance band.
Hence answer is (B).
3. By reciprocity theorem,
$\frac{1}{5}=\frac{1}{5}$
$\therefore \mathrm{I}=1 \mathrm{~A}$
4. let output of NAND gate is M and output of NOR gate is N
$\therefore \mathrm{M}=\overline{\mathrm{E}_{\mathrm{N}} \cdot \mathrm{D}}$
And $\mathrm{N}=\overline{\overline{\mathrm{E}_{\mathrm{N}}}+\mathrm{D}}$
$\therefore \mathrm{N}=\mathrm{E}_{\mathrm{N}} \cdot \overline{\mathrm{D}}$
When $\mathrm{E}_{\mathrm{N}}=0$
$\mathrm{M}=1$ and $\mathrm{N}=0$
So both PMOS and NMOS will be OFF
So F will be at high impedance
When $\mathrm{E}_{\mathrm{N}}=1$
$\mathrm{M}=\overline{\mathrm{D}} \& \mathrm{~N}=\overline{\mathrm{D}}$

So this CMOS will act as not gate
$\therefore \mathrm{F}$ will be D
\therefore Option (A) is correct.
5. Since it is a upper triangular matrix eigen values will bee $2,1,3,2$
\therefore distinct eigen values are three
6.
$\frac{d y}{d x}=-\left(\frac{x}{y}\right)^{n}$
When $\mathrm{n}=-1$
$\frac{d y}{d x}=-\frac{x}{y}$
$\therefore \frac{\mathrm{dy}}{\mathrm{y}}=-\frac{\mathrm{dx}}{\mathrm{x}}$
$\therefore \ln y=-\ln (x)+\ln (c)$
$\therefore \ln (x y)=\ln (c)$
$\therefore \mathrm{xy}=\mathrm{c}$
This represents rectangular hyperbola.

Now for $\mathrm{n}=+1$
$\frac{d y}{d x}=-\frac{x}{y}$
$\therefore \mathrm{ydy}=-\mathrm{xdx}$
$\therefore \frac{\mathrm{y}^{2}}{2}=\frac{-\mathrm{x}^{2}}{2}+c$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{c}$
This represents family of circles.
7.
let $H(z)=\frac{(z-a)(z-b)}{(z-c)(z-d)}$
$\therefore H\left(\frac{1}{z}\right)=\frac{\left(\frac{1}{z}-a\right)\left(\frac{1}{z}-b\right)}{\left(\frac{1}{z}-c\right)\left(\frac{1}{z}-d\right)}$
$\therefore H\left(\frac{1}{z}\right)=\frac{\left(z-\frac{1}{a}\right)\left(z-\frac{1}{b}\right)}{\left(z-\frac{1}{c}\right)\left(z-\frac{1}{d}\right)}$
$\therefore H(z) \cdot H\left(\frac{1}{z}\right)=\frac{(z-a)(z-b)\left(z-\frac{1}{a}\right)\left(z-\frac{1}{b}\right)}{(z-c)(z-d)\left(z-\frac{1}{c}\right)\left(z-\frac{1}{d}\right)}$
\therefore zeros are $\mathrm{a}, \mathrm{b}, \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}$
given zero is $a=\frac{1}{2}+\frac{1}{2} \mathrm{j}$
as $h(n)$ is real valued signal another zero must be complex conjugate of this
$\therefore \mathrm{b}=\frac{1}{2}-\frac{1}{2} \mathrm{j}$
Now $z_{3}=\frac{1}{a}=\frac{1}{\frac{1}{2}+\frac{1}{2} j}$
$=\frac{2}{1+j}$
$=\frac{2(1-j)}{2}$
$z_{3}=1-j$
as $h(n)$ is real valued signal another zero must be complex conjugate of this
$z_{4}=1+j$
$\therefore z_{1}=\frac{1}{2}+\frac{1}{2} j \quad z_{2}=\frac{1}{2}-\frac{1}{2} j \quad z_{3}=1-j \quad z_{4}=1+j$
8.

By changing order of integration

$$
\int_{x=0}^{x=\pi}\left(\int_{y=0}^{y=x} d y\right) \frac{\sin x}{x} d x
$$

$$
\therefore \int_{x=0}^{\pi} x \frac{\sin x}{x} d x
$$

$\therefore \int_{x=0}^{\pi} x \sin x d x$

$$
\therefore[-\cos x]_{0}^{\pi}=2
$$

9. $\mathrm{R}_{\mathrm{rad}}=80 \pi^{2}\left(\frac{\mathrm{dl}}{\lambda}\right)^{2}$

$$
80 \pi^{2}\left(\frac{\mathrm{dlf}}{\mathrm{C}}\right)^{2}
$$

$\therefore \mathrm{R}_{\text {rad }} \propto \mathrm{I}^{2} \mathrm{f}^{2}$

Now frequency is constant

$$
\begin{aligned}
& \therefore \mathrm{R}_{\mathrm{rad}} \propto \mathrm{f}^{2} \\
& \therefore \frac{\Delta \mathrm{R}}{\mathrm{R}}=2 \frac{\Delta \mathrm{l}}{\mathrm{l}} \\
& =2 \times 1 \% \\
& \therefore \frac{\Delta \mathrm{R}}{\mathrm{R}}=2 \%
\end{aligned}
$$

10. $y(s)$ is unit step response

$$
\begin{aligned}
& \therefore \mathrm{y}(\mathrm{~s})=\mathrm{G}(\mathrm{~s}) \times \frac{1}{\mathrm{~s}} \\
& =\frac{3-\mathrm{s}}{\mathrm{~s}(\mathrm{~s}+1)(\mathrm{s}+3)}
\end{aligned}
$$

$$
=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+3}
$$

$$
\therefore \mathrm{y}(\mathrm{~s})=\frac{1}{\mathrm{~s}}-\frac{2}{\mathrm{~s}+1}+\frac{1}{\mathrm{~s}+3}
$$

$$
\therefore \mathrm{y}(\mathrm{t})=\mathrm{u}(\mathrm{t})-2 \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})
$$

11.

12.

If we consider a total cylinder then by gauss law

O
sed

But $Q_{\text {enclosed }}=\mathrm{Q} \cdot \mathrm{H}$
And we are considering only $\frac{1}{4}$ th of the cylinder
$\therefore \mathrm{D}=\frac{\mathrm{Q} \cdot \mathrm{H}}{4}$
$\therefore E=\frac{Q \cdot H}{4 \epsilon_{0}}$
13. By rearranging the circuit,

Truth table:

A	B	F
0	0	1
0	1	0
1	0	0
1	1	1

So it is XNOR gate.
14. When V_{s} is $+v e$

Diode will be reserve biased

$V_{L}=\frac{R_{2}}{R_{1}+R_{2}} V_{S}$
$\therefore \mathrm{V}_{\mathrm{L}}=\frac{50}{50+50} \times 8$
$\therefore \mathrm{V}_{\mathrm{L}}=4 \mathrm{~V}$
When V_{S} is -ve
Diode will be forward biased

$\therefore \mathrm{VL}=\mathrm{VS}=-10 \mathrm{~V}$
From (i) and (ii)
Average value $=\frac{4+(-10)}{2}=-3$
\therefore Average value $=-3$
15. We know that
$E[A X+B Y]=A E[X]+B E[Y]$
$\therefore \mathrm{E}[2 \mathrm{X}+\mathrm{Y}]=2 \mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=0$
And $\mathrm{E}[\mathrm{X}+2 \mathrm{Y}]=\mathrm{E}[\mathrm{X}]+2 \mathrm{E}[\mathrm{Y}]=33$
Adding (i) and (ii)
$3 E[X]+3 E[Y]=33$
$\therefore \mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=11$
16. We know that
$\mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{O}}$
$\mathrm{NM}_{\mathrm{H}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}$
Now, $\mathrm{V}_{\mathrm{IL}}=\frac{2 \mathrm{~V}_{0}-\left|\mathrm{V}_{\mathrm{TP}}\right|-\mathrm{V}_{\mathrm{DD}}+\mathrm{kV} \mathrm{V}_{\mathrm{Tn}}}{1+\mathrm{k}}$
$V_{O L}=V_{\text {in }}-V_{T P}+\sqrt{\left(V_{\text {in }}-V_{D D}-V_{T P}\right)^{2}+k\left(V_{\text {in }}-V_{T P}\right)^{2}}$
$V_{O H}=V_{i n}-V_{T n}+\sqrt{\left(V_{i n}-V_{T n}\right)^{2}+\frac{1}{k}\left(V_{i n}-V_{D D}-V_{T P}\right)^{2}}$
$V_{I H}=\frac{V_{D D}+V_{T P}+k\left(2 V_{\mathrm{O}}+\mathrm{V}_{\mathrm{TP}}\right)}{1+\mathrm{k}}$
Where $k=\frac{(w / L) n}{(w / L) P}$
\therefore as $\mathrm{W}_{\mathrm{P}} \uparrow \rightarrow \mathrm{NM}_{\mathrm{L}} \uparrow$ and $\mathrm{NM}_{\mathrm{H}} \downarrow$
17. $\nabla \cdot \bar{D}=\rho_{V}$

This is Gauss law
$\nabla \times \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}}$
This is faraday law of electromagnetic induction
$\nabla \times \bar{B}=0$
This is Gauss law in magnetostatics which states magnetic monopole does not exists.
$\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}}$
This is modified form of ampere's circuital law.
18. at $\mathrm{F}=10 \mathrm{~Hz}$ we have one pole

At $\mathrm{F}=10^{2} \mathrm{~Hz}$ we can see two more poles are added as slope is decreased by $40 \mathrm{~dB} /$ decade
At $\mathrm{F}=10^{3} \mathrm{~Hz}$ we have a zero
At $\mathrm{F}=10^{4} \mathrm{~Hz}$ we have two zero's
At $\mathrm{F}=10^{5} \mathrm{~Hz}$ we have two pole's

At $\mathrm{F}=10^{6}$ we have one pole
\therefore Total poles $\mathrm{N}_{\mathrm{p}}=6$
And total zeros $\mathrm{N}_{\mathrm{z}}=3$
19. $x(t)=\cos (2 \pi f c t+k m(t))$
$\therefore \mathrm{Q}(\mathrm{t})=2 \pi \mathrm{fct}+\mathrm{km}(\mathrm{t})$
And $\mathrm{fi}=\frac{1}{2 \pi} \frac{\partial}{\partial \mathrm{t}}(\mathrm{Q}(\mathrm{t}))$
$=\frac{1}{2 \pi} \frac{\partial}{\partial \mathrm{t}}[2 \pi f \mathrm{ct}+\mathrm{km}(\mathrm{t})]$
$f i=f c+\frac{k}{2 \pi} \frac{\partial}{\partial t} m(t)$
$\therefore \mathrm{fi}_{\max }=\mathrm{fc}+\frac{\mathrm{k}}{2 \pi}\left[\frac{\partial}{\partial \mathrm{t}} \mathrm{m}(\mathrm{t})\right]_{\max }$
$\therefore \mathrm{fi}_{\max }=50 \mathrm{kHz}+5 \times \frac{1-(-1)}{(7-6) \times 10^{-3}}$
$\therefore \mathrm{fi}_{\text {max }}=50 \mathrm{kHz}+10 \mathrm{kHz}$
$\therefore \mathrm{fi}_{\max }=60 \mathrm{kHz}$
And $\mathrm{fi}_{\min }=\mathrm{fc}+\frac{\mathrm{k}}{2 \pi}\left[\frac{\partial}{\partial \mathrm{t}}(\mathrm{m}(\mathrm{t}))\right]_{\min }$
$50 \mathrm{kHz}+5 \times \frac{-1-1}{(9-7) \times 10^{-3}}$
$=50 \mathrm{kHz}-5 \mathrm{kHz}$
$\mathrm{fi}_{\text {min }}=45 \mathrm{kHz}$
$\therefore \frac{\mathrm{f}_{\text {min }}}{\mathrm{f}_{\max }}=\frac{45}{60}=0.75$
20. $\mathrm{D}_{1}=\overline{\mathrm{Q}}_{1} \cdot \overline{\mathrm{Q}}_{2}$
$\mathrm{D}_{2}=\mathrm{Q}_{1}$

Present State		Excitation		Next state	
Q_{1}	Q_{2}	D_{1}	D_{2}	Q_{1}^{+}	Q_{2}^{+}
0	0	1	0	1	0
1	0	0	1	0	1
0	1	0	0	0	0

As three states are there

Frequency of output $=$ Frequency of $Q_{2}=\frac{12 \mathrm{kHz}}{3}=4 \mathrm{kHz}$
21. As it is given that it is linear hamming code addition of two codes will produce another code.
(Here we are talking about mod 2 addition)
$0001 \rightarrow 0000111$
$0011 \rightarrow 1100110$
$\overline{0010} \rightarrow \overline{1100001}$
22. Ans. 0367

Sol. Probability density function (Pdf) $=\frac{d}{d x}(C D F)$
\therefore Pdf $= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}$
Now $\operatorname{Pr}(z>2 \mid z>1)=\frac{\operatorname{Pr}[(z>2) \cap(z>1)]}{\operatorname{Pr}(z>1)}$
$=\frac{\operatorname{Pr}(z>2)}{\operatorname{Pr}(z>1)}$
$=\frac{\int_{2}^{\infty} e^{-x} d x}{\int_{1}^{\infty} e^{-x} d x}$
$=\frac{-1\left(e^{-\infty}-e^{-2}\right)}{-1\left(e^{-\infty}-e^{-1}\right)}$
$=\frac{e^{-2}}{e^{-1}}=\frac{1}{e}$
$\therefore \operatorname{Pr}(Z>2 \mid Z>1)=0.367$
23. DC value and phase shift does not affect time period of a signal.

So it is equivalent to find time period of
$\mathrm{x}(\mathrm{t})=2 \cos (\pi \mathrm{t})+3 \sin \left(\frac{2 \pi}{3}\right)+4 \cos \left(\frac{\pi}{2} \mathrm{t}\right)$
$\therefore \omega_{1}=\pi \quad \mathrm{T}_{1}=\frac{2 \pi}{\omega_{1}}=2$ second
$\omega_{2}=\frac{2 \pi}{3} \quad \mathrm{~T}_{2}=\frac{2 \pi}{\omega_{2}}=3$ second
$\omega_{3}=\frac{\pi}{2} \quad \mathrm{~T}_{3}=\frac{2 \pi}{\omega_{3}}=4$ second

Now overall T $=\operatorname{LCM}\left(T_{1}, T_{2}, T_{3}\right)$
$=\operatorname{LCM}(2,3,4)$
\therefore overall $\mathrm{T}=12$ seconds
24.

25. ${ }^{\frac{1}{2 \pi i} O_{\mid z, 1}} O_{z^{2}}^{\left(z^{2} \cdot 1\right)^{2}} d z$

For poles:
Consider $z^{2}=0 \Rightarrow z=0,0$

Now $f(z)=\left(z^{2}+1\right)^{2}$
$\mathrm{O}_{\mathrm{C}} \mathrm{f}^{\prime} z^{\prime}{ }^{\prime} \mathrm{a}^{n} \mathrm{dz} \quad \frac{2 \pi i}{n-1)!} f^{n-1}(a)$
$=\frac{1}{2 \pi i}\left[\frac{2 \pi i}{(2-1)!} f^{2-1}(a)\right]=f^{\prime}(a)=f^{\prime}(0)$
Now $f^{\prime}(z)=2\left(z^{2}+1\right)(2 z)$
$f^{\prime}(0)=2(0+1)(0)=0$
\therefore So answer is zero.
26. Let output of $M U X$ is M

So $M=\bar{A} \bar{Q}+A Q$
$\therefore \mathrm{M}=\mathrm{A} \odot$

And $\mathrm{D}=\mathrm{MQ}$
$=\overline{\mathrm{M}}+\overline{\mathrm{Q}}$
$D=A \oplus Q+\bar{Q}$

Present State	Input	Next State
Q	A	$\mathrm{Q}^{+}=\mathrm{D}$
0	0	1
0	1	1
1	0	1
1	1	0

State Diagram:-

27. Given $\mathrm{V}_{T \mathrm{~T}}=0.6 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{SB}}=0$ and $\lambda=0$

In figure (i)

In figure (ii)

Ever MOS transistor has same $\mathrm{V}_{\mathrm{G}}=3 \mathrm{~V}$
$\therefore \mathrm{V}_{1}=\mathrm{V}_{2}=$ Vout $2=\mathrm{VG}-\mathrm{VT}$
$=3-0.6$
\therefore Vout $2=2.4 \mathrm{~V}$
28.

$\frac{\frac{s^{2}+1}{s}}{1+\frac{s^{2}+1}{s}}=\frac{s^{2}+1}{s^{2}+s+1}$

$T F=\frac{\frac{s^{2}+1}{s\left(s^{2}+s+1\right)}}{1+\frac{s^{2}+1}{s\left(s^{2}+s+1\right)}}$
$\therefore \mathrm{TF}=\frac{\mathrm{s}^{2}+1}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+\mathrm{s}+1}$
29. $P_{o}(-1+N>V$ th $)$
$\mathrm{P}_{\mathrm{o}}(\mathrm{N}>\mathrm{Vth}+1)=\int_{\mathrm{vth}+1}^{2} \frac{1}{4} \mathrm{dx}=\frac{1}{4}[2-\mathrm{Vth}-1]=\frac{1}{4}(1-\mathrm{Vth})$
$\mathrm{P}_{1}(1+\mathrm{N}<\mathrm{V}$ th $)$
$P_{1}(N<V t h-1)=\int_{-2}^{\text {Vth }-1} \frac{1}{4} d x=\frac{1}{4}[$ Vth $-1+2]=\frac{1}{4}(\mathrm{Vth}+1)$
$P_{e}=P(0) P_{o}(N>V t h+1)+P(1) P_{1}(N<V t h-1)$
$P_{e}=0.2 \times \frac{1}{4}(1-\mathrm{Vth})+0.8 \times \frac{1}{4}(\mathrm{Vth}+1)$
$=0.05-0.5 \mathrm{Vth}+0.2 \mathrm{Vth}+0.2$
$P_{e}=0.25+0.15 \mathrm{~V} t h$
For Vth $=0 \rightarrow \mathrm{Pe}=0.25$
For Vth $=1 \rightarrow \mathrm{Pe}=0.4$
For Vth $=-1 \rightarrow \mathrm{Pe}=0.1$
\therefore Minimum probability of error $=0.1$
30. Ans. 0.231

Sol. $\quad 1-\mathrm{e}^{-\alpha x}=0.5$
$\mathrm{e}^{-\alpha x}=0.5$
now $\propto=3 \times 10^{4} \mathrm{~cm}^{-1}$
$\therefore \mathrm{x}=\frac{-\ln (0.5)}{3 \times 10^{4}}$
31.
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{P}} \operatorname{cox}\left(\frac{\omega}{\mathrm{L}}\right)_{P}\left(\mathrm{~V}_{\mathrm{GSP}}-\left|\mathrm{V}_{\mathrm{TP}}\right|\right)^{2}$
$=\frac{1}{2} \times 30 \times 10^{-6} \times 10 \times(2-1)^{2}$
$\mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{~A}$
Now, $g_{m}=\sqrt{21_{\mathrm{D}} \mu_{\mathrm{n}} \operatorname{cox}\left(\frac{\omega}{\mathrm{L}}\right)_{\mathrm{N}}}$
$g_{\mathrm{m}}=\sqrt{2 \times 150 \times 10^{-6} \times 60 \times 10^{-6} \times 5}$
$\therefore \mathrm{gm}=300 \times 10^{-6} \mathrm{~s}$
Now $A_{v}=-g m\left(r_{d s}| | r_{d s}\right)$
$=-300 \times 10^{-6}\left(\left(6 \times 10^{6}\right) \| \quad\right)$
$=-300 \times 10^{-6} \times 3 \times 10^{6}$
$\therefore \mathrm{A}_{\mathrm{v}}=-900$
32. Given that
$h(0)=1, h(1)=a, h(2)=b$ and $h(n)=0$ otherwise
$\therefore H\left(e^{j w}\right)=1+a e^{-j w}+b e^{-j 2 w}$
Now $\mathrm{y}(\mathrm{n})=0$ for all n
Now $x(n)=C_{1} e^{\left(\frac{-j \pi n}{2}\right)}+C_{2} e^{\left(\frac{j \pi n}{2}\right)}$
If we consider $\mathrm{C}_{1} \mathrm{e}^{\left(\frac{-\mathrm{j} \pi \mathrm{n}}{2}\right)}$ as input then
Output $=C_{1}\left[1+a e^{+j \frac{\pi}{2}}+b e^{-j 2\left(-\frac{\pi}{2}\right)}\right]$
Output $=C_{1}\left[1+a e^{j \frac{\pi}{2}}+b e^{j \pi}\right]$
If we consider $\mathrm{C}_{2} \mathrm{e}^{\left(\frac{\mathrm{j} \pi \mathrm{n}}{2}\right)}$ as input then
Output $=C_{2}\left[1+a e^{-j \frac{\pi}{2}}+b e^{-j 2\left(\frac{\pi}{2}\right)}\right]$
$=C_{2}\left[1+a e^{-j \frac{\pi}{2}}+b e^{-j \pi}\right]$
Both output (i) and (ii) will be zero if
$\mathrm{a}=0, \mathrm{~b}=1$
33.
$\mathrm{I}_{\mathrm{D}}=\frac{\mu_{\mathrm{n}} \mathrm{c}_{\mathrm{ox}}}{2} \cdot\left(\frac{\omega}{\mathrm{~L}}\right) \cdot\left(\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{T}}\right)^{2}$
$=\frac{300 \times 3.45 \times 10^{-7}}{2} \times\left(\frac{10}{1}\right) \times(5-0.7)^{2}$
$\therefore \mathrm{I}_{\mathrm{D}}=25.5 \mathrm{~mA}$
34. Current through FET having $\left(\frac{\omega}{\mathrm{L}}\right)=3$ will be I_{1}
$\therefore I_{1}=\frac{(\omega / \mathrm{L})_{2}}{(\omega / \mathrm{L})_{1}} \times 1 \mathrm{~mA}$
$\therefore \mathrm{I}_{1}=\frac{3}{2} \mathrm{~mA}$
Now,
$\mathrm{I}_{\text {out }}=\frac{(\omega / \mathrm{L}) 4}{(\omega /)_{3}} \times I_{1}$
$=\frac{40}{10} \times \frac{3}{2} \mathrm{~mA}$
$\therefore l_{\text {out }}=6 \mathrm{~mA}$
35. Quantum Efficiency $\eta=\frac{R_{e}}{R_{p}}$
$\mathrm{R}_{\mathrm{e}}=$ Corresponding Electron Rate (electrons/sec)
Rp = Incident Photon Rate (Photons/sec)
$R_{e}=\frac{I_{p}}{q}, R_{p}=\frac{P_{\text {in }}}{h v}, R=\frac{I_{p}}{P_{\text {in }}}$
Now $\eta=\frac{P_{P / q}}{P_{i n / h v}}$

So $\quad \eta=\frac{\mathrm{P}_{\mathrm{P} / \mathrm{q}}}{\mathrm{P}_{\mathrm{in} / \mathrm{h} v}}=\frac{\mathrm{l}_{\mathrm{p}} h \nu}{\mathrm{q} \mathrm{P}_{\text {in }}}=\frac{\mathrm{h} \mathrm{\nu R}}{\mathrm{q}}$
$\Rightarrow R=\frac{q \eta}{h \nu}=\frac{q \eta \lambda}{h c}=\eta \times\left(\frac{q}{h c}\right)$
$\mathrm{q}=1.6 \times 10^{-19} \mathrm{c}, \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$R=\frac{\eta \lambda}{1.24}$
36.

Performing star to delta conversion

$$
\begin{aligned}
& \text { Where } Z_{1}=2\left[\frac{R}{1+\frac{j W C R}{3}}\right] \\
& \therefore \mathrm{Z}_{\text {eq }}= \mathrm{Z}_{1} \| \\
& \therefore \mathrm{Z}_{\text {eq }}=\frac{2}{3}\left(\frac{\mathrm{R}}{1+\frac{\mathrm{jWCR}}{3}}\right) \\
& \text { Now } \mathrm{R}=1 \mathrm{~kW}, \mathrm{C}=1 \mu \mathrm{~F} \text { and } \mathrm{W}=1000 \mathrm{rad} / \mathrm{sec} \\
& \therefore \mathrm{Zeq}=0.66-0.2178 \mathrm{j} \\
& \therefore \mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}_{\text {eq }}} \\
&=\frac{2 \sin (1000 \mathrm{t})}{0.66-0.2178 \mathrm{j}} \\
&=\frac{2}{\sqrt{0.66^{2}+0.2178^{2}}} \cdot \sin \left(1000 \mathrm{t}-\tan ^{-1}\left(\frac{1}{3}\right)\right) \\
&= 3.16 \sin \left(1000 \mathrm{t}+18.43^{\circ}\right) \\
& \therefore \mathrm{I} \approx 3 \sin (1000 \mathrm{t})+\cos (1000 \mathrm{t})
\end{aligned}
$$

37.

$I_{z \max }=60 \mathrm{~mA}$
$I_{L}=\frac{20}{1000}=20 \mathrm{~mA}$

As $I_{\text {zmin }}$ not given,
$I_{z \min }=0 \mathrm{~mA}$
Now $I_{S}=I_{z}+I_{L}$
$\therefore I_{\text {smin }}=I_{Z_{\text {min }}}+I_{L}$
$=0+20 \mathrm{~mA}$
$\therefore I_{\text {min }}=20 \mathrm{~mA}$
Now $I_{S}=\frac{V_{S}-V_{Z}}{200}$
$\therefore 20 \mathrm{~mA}=\frac{\mathrm{V}_{\mathrm{S}}-20}{200}$
$\therefore \mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}$
Now $I_{\text {max }}=I_{Z \text { max }}+I_{L}$
$=60+20$
$I_{\text {max }}=80 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{Z}}}{200}$
$\therefore 80 \mathrm{~mA}=\frac{\mathrm{V}_{\mathrm{S}}-20}{200}$
$\therefore \mathrm{V}_{\mathrm{S}}=36 \mathrm{~V}$
38.

Sol. $\quad H=\frac{1}{2 \pi \rho} a \rho$
For wire ω_{1}
$H_{1}=\frac{1}{2 \pi r}$
For wire ω_{2}
$H_{2}=\frac{2 l}{2 \pi 3 r}$

Magnetic field will be circular and can be find out by right hand rule
Both fields will add at middle region
\therefore at dotted line
$\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$
$\therefore H=\frac{51}{6 \pi r}$
Now $B=\mu \mathrm{H}$
$B=\frac{\mu_{0} 51}{6 \pi r}$
39.

Sol. $\quad V_{g}=\frac{d \omega}{d \beta}$
Now, $\frac{d \beta}{d \omega}=\frac{d k(\omega)}{d \omega}=\frac{d}{d \omega} \cdot \frac{1}{c} \sqrt{\omega^{2}-\omega_{0}^{2}}=\frac{1}{2 c \sqrt{\omega^{2}-\omega_{0}^{2}}} \times 2 \omega$
$\frac{d \beta}{d \omega}=\frac{\omega}{c \sqrt{\omega^{2}-\omega_{0}^{2}}}$
$V_{g}=\frac{\frac{1}{\omega}}{c \sqrt{\omega^{2}-\omega_{0}^{2}}}=2 \times 10^{8} \Rightarrow \frac{c \sqrt{\omega^{2}-\omega_{0}^{2}}}{\omega}=2 \times 10^{8}$
$\Rightarrow \sqrt{\omega^{2}-\omega_{0}^{2}}=\frac{2 \omega}{3}$
Now, $\mathrm{V}_{\mathrm{p}}=\frac{\omega}{\beta}=\frac{\omega}{\mathrm{k}}=\frac{\omega}{\frac{1}{\mathrm{c}} \sqrt{\omega^{2}-\omega_{0}^{2}}}=\frac{\omega c}{2 \frac{\omega}{3}}=\frac{3 \mathrm{c}}{2}$
$V_{p}=\frac{3}{2} \times 3 \times 10^{8}=4.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$V_{p}=4.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
40. $f(-1)=0$

So only option (B) and (C) are possible
Let's try option (B)
$f(x)=2|x+1|$
$\therefore f(x)=\left\{\begin{array}{cc}2(x+1) & \text { for } x+1>0 \\ -2(x+1) & \text { for } x+1<0\end{array}\right.$
$\therefore f(x)=\left\{\begin{array}{cc}2(x+1) & \text { for } x>-1 \\ -2(x+1) & \text { for } x<-1\end{array}\right.$
$\therefore f^{\prime}(x)=\left\{\begin{array}{c}2 \text { for } x>-1 \\ -2 \text { for } x<-1\end{array}\right.$
$\therefore\left|f^{\prime}(\mathrm{x})\right| \leq 2$
\therefore option (B) is correct.
41.
$G(s)=\frac{C(s)}{R(s)}$
$\therefore \mathrm{C}(\mathrm{s})=\mathrm{G}(\mathrm{s}) \cdot \mathrm{R}(\mathrm{s})$
$=\frac{1}{s\left(s^{2}+2 s+1\right)}$
$\therefore C(s)=\frac{1}{s(s+1)^{2}}$
$\therefore C(s)=\frac{A}{s}+\frac{B}{(s+1)}+\frac{C}{(s+1)^{2}}$
$\therefore A(s+1)^{2}+B s(s+1)+C s=1$
$\therefore \mathrm{As}^{2}+2 \mathrm{As}+\mathrm{A}+\mathrm{Bs}^{2}+\mathrm{Bs}+\mathrm{Cs}=1$
$\therefore \mathrm{A}+\mathrm{B}=0$
$\therefore 2 A+B+C=0$
$\therefore \mathrm{A}=1$

So $B=-1$
And C $=-1$
$\therefore C(s)=\frac{1}{s}+\frac{-1}{s+1}+\frac{-1}{(s+1)^{2}}$
$\therefore \mathrm{C}(\mathrm{t})=\left(1-\mathrm{e}^{-\mathrm{t}}-\mathrm{te}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
At $t \rightarrow \infty$ stedy state will occur
$\therefore \mathrm{C}(\infty)=1$
Now we are asked to find time at which 94% of the steady state value reached.
$\therefore \mathrm{C}(\mathrm{t})=1-\mathrm{e}^{-\mathrm{t}}-\mathrm{te}^{-\mathrm{t}}=0.94$
$\therefore \mathrm{e}^{-\mathrm{t}}+\mathrm{te}^{-\mathrm{t}}=0.06$
$\therefore \mathrm{e}^{-\mathrm{t}}(1+\mathrm{t})=0.06$
Now from the given options try all option you will get $\mathrm{t}=4.50 \mathrm{sec}$.
42.

$$
x(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}
$$

We are obtaining $X(1)$ correctly
$\therefore \mathrm{k}=1$
$\therefore \mathrm{x}(1)=\mathrm{x}(0)+\mathrm{x}(1) \mathrm{W}_{6}^{1}+\mathrm{x}(2) \mathrm{W}_{6}^{2}+\mathrm{x}(3) \mathrm{W}_{6}^{3}+\mathrm{x}(4) \mathrm{W}_{6}^{4}+\mathrm{x}(5) \mathrm{W}_{6}^{5}$
We know that
$W_{N}^{k+\frac{N}{2}}=-W_{N}^{K}$
$\therefore W_{6}^{3}=-W_{6}^{0}=-1$
$W_{6}^{4}=-W_{6}^{1}$
$W_{6}^{5}=-W_{6}^{2}$
\therefore comparing with given graph
$a_{1}=1, \quad a_{2}=W_{6}, \quad a_{3}=W_{6}^{2}$
43.

$$
H(s)=\frac{1}{s^{2}+3 s^{2}+2 s+1}
$$

$\therefore\left[\begin{array}{cccc}\dot{x}_{1} & 0 & 1 & 0 \\ \dot{x}_{2} & 0 & 0 & 1 \\ \dot{x}_{3} & -1 & -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right][u]$
$\&[y]=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+[0][u]$
$\therefore A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right]$ and $C=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
44. Same current will flow through both NMOS \& PMOS
$\therefore \mathrm{ID} 1=\mathrm{ID} 2$
$\therefore \frac{\mu_{\mathrm{n}} \operatorname{cox}}{2} \cdot\left(\frac{\omega}{\mathrm{~L}}\right)_{\mathrm{N}}\left(\mathrm{V}_{\mathrm{GSN}}-\mathrm{V}_{T \mathrm{~N}}\right)^{2}=\frac{\mu_{\mathrm{p}} \operatorname{cox}}{2} \cdot\left(\frac{\omega}{\mathrm{~L}}\right)_{\mathrm{p}}\left(\mathrm{V}_{\mathrm{GSP}}-\left|\mathrm{V}_{\mathrm{TP}}\right|\right)^{2}$
$\therefore 100 \times\left(\frac{\omega}{\mathrm{L}}\right)_{\mathrm{N}} \cdot(1.5-0.7)^{2}=400 \times\left(\frac{\omega}{\mathrm{L}}\right)_{\mathrm{P}}(1.5-0.9)^{2}$
$\therefore \frac{(\omega / \mathrm{L})_{\mathrm{N}}}{(\omega / \mathrm{L})_{\mathrm{p}}}=\frac{9}{16} \times \frac{4}{10}$
$=0.225$
$\left(\because \quad \prime_{\mathrm{GSP}}=\frac{\mathrm{V}_{\mathrm{dd}}}{2}=1.5 \mathrm{~V}\right)$
45.
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{V}}{2} \sqrt{\left(\frac{m}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}$
For $T \varepsilon_{10}, \quad m=1, \quad n=0$
$\mathrm{fc}_{1}=\frac{\mathrm{V}}{2} \sqrt{\left(\frac{1}{\mathrm{a}}\right)^{2}=0}=\frac{\mathrm{V}}{2 \mathrm{a}}$
For $T \varepsilon_{11}$,
$m=1, n=1$
$\mathrm{f}_{\mathrm{c}_{2}}=\frac{\mathrm{V}}{2} \sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}$
Given $\frac{\mathrm{f}_{\mathrm{c}_{1}}}{\mathrm{f}_{\mathrm{c}_{2}}}=\frac{1}{2}$
$\frac{\mathrm{V} / 2 \mathrm{a}}{\frac{\mathrm{V}}{2} \sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}=\frac{1}{2}$
$\frac{\frac{1}{a}}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}=\frac{1}{2} \Rightarrow \frac{\frac{1}{a}}{\frac{\sqrt{a^{2}+b^{2}}}{a b}}=\frac{1}{2}$
$\frac{b}{\sqrt{a^{2}+b^{2}}}=\frac{1}{2}$
$\Rightarrow 4 b^{2}=a^{2}+b^{2}$
$\Rightarrow 3 b^{2}=a^{2}$
$\Rightarrow \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{1}{3}$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{a}{b}=\sqrt{3}$
$\frac{\text { width }}{\text { hight }}=\sqrt{3}=1.732$
46.

and $y(t)=z(t)+p(t)$
$\therefore \operatorname{Ryy}(\tau)=R_{z z}(\tau)+R_{p p}(\tau)+R_{p z}(\tau)+R_{z p}(\tau)$
now $x(t) \& z(t)$ are uncorrelated.
$\therefore \operatorname{Rpz}(\tau)=\mathrm{R}_{\mathrm{zp}}(\tau)=0$
$\therefore \mathrm{R}_{\mathrm{yy}}(\tau)=\mathrm{R}_{\mathrm{zz}}(\tau)+\mathrm{R}_{\mathrm{pp}}(\tau)$
So the power spectral relation can be given by Fourier transform of the above relation.
$\therefore \mathrm{S}_{y y}(\mathrm{f})=\mathrm{S}_{z z}(\mathrm{f})+\mathrm{S}_{\mathrm{pp}}(\mathrm{f})$
now power of $y(t)=$
$\int_{\infty}^{\infty} s_{y y}(f) d f$
$\therefore \mathrm{P}=\int_{\infty}^{\infty} \mathrm{s}_{z z}(\mathrm{f}) \mathrm{df} \quad+\int_{\infty}^{\infty} \mathrm{s}_{\mathrm{pp}}(\mathrm{f}) \mathrm{df}$
now $S_{p p}(f)=|H(w)|^{2} \times S_{x x}(f)$

\&

$\therefore \mathrm{P}=\frac{5}{4} \times 10+\frac{1}{2} \times 10 \times 1$
$\therefore \mathrm{P}=17.5$ watt
47. For the minimization of the energy in the error signal there are different approaches like, Prony's method, Pade approximation. As $\mathrm{g}(\mathrm{n})$ has three samples.

Consider them as $\mathrm{g}(-1), \mathrm{g}(0), \mathrm{g}(1)$ we can minimise $\mathrm{E}(\mathrm{h}, \mathrm{g})$ by making $\mathrm{h}(\mathrm{n})=\mathrm{g}(\mathrm{n})$ using rectangular window and Parseval's there of OTFT.

Based on which $10 \mathrm{~g}(-1)+\mathrm{g}(1)=10(-3)+3$

$$
=-27
$$

48. $\mathrm{I}_{\mathrm{r}}=0.75 \mathrm{I}_{5}$
\therefore Forward current $=\mathrm{I}_{\mathrm{D}}=-0.75 \mathrm{I}$
$\therefore \mathrm{I}_{\mathrm{S}}\left(\mathrm{e}^{\mathrm{vo} / \mathrm{nvt}}-1\right)=-0.75 \mathrm{I}_{\mathrm{s}}$
Now Take $\mathrm{n}=1$
$\therefore \mathrm{e}^{\mathrm{vo} / \mathrm{VT}}=0.25$
$\therefore \mathrm{V}_{\mathrm{D}}=\mathrm{V} \operatorname{IIn}(0.25)$
$\therefore \mathrm{V}_{\mathrm{R}}=-\mathrm{V} \operatorname{IIn}(0.25)$
$=-\frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}} \times-1.386$
$\therefore \mathrm{V}_{\mathrm{R}}=35.87 \mathrm{mv}$
49. Given differential equation is of Cauchy - Euler differential equation type.

So let $\quad \mathrm{x}=\mathrm{e}^{\mathrm{z}} \quad \therefore \mathrm{z}=\ln \mathrm{x}$
The differential equation can be written as,
$D(D-1)-3 D+3=0$
$\therefore \mathrm{D}^{2}-4 \mathrm{D}+3=0$
$\therefore \mathrm{D}=1,3$
$\therefore y=C_{1} \mathrm{e}^{z}+C_{2} \mathrm{e}^{3 z}$
$\therefore \mathrm{y}=\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{3}$
Now y (1) = 1
$\therefore \mathrm{C}_{1}+\mathrm{C}_{2}=1$
And $y(2)=14$
$\therefore 2 C_{1}+8 C_{2}=14 \ldots$ (ii)
From (i) and (ii)
$C_{1}=-1, C_{2}=2$
$\therefore \mathrm{y}=-\mathrm{x}+2 \mathrm{x}^{3}$
$\therefore \mathrm{y}(1.5)=-1.5+2(1.5)^{3}$
$\therefore \mathrm{y}(1.5)=5.25$
50. We know that,
$\mathrm{I}_{\mathrm{C}}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dV} \mathrm{V}_{\mathrm{C}}(\mathrm{t})}{\mathrm{dt}}$
And capacitor will be charged by the following equation
$V_{c}(t)=V_{s}\left(1-e^{-t / \tau}\right)$
$I_{C}(t)=C \cdot \frac{d}{d t}\left[V_{S}\left(1-e^{-t / \tau}\right)\right]$
$\therefore \mathrm{I}_{\mathrm{C}}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}(\mathrm{t})} \mathrm{e}^{-\mathrm{t} / \mathrm{R}(\mathrm{t}) \cdot \mathrm{C}}$
Given $R(t)=R_{0}\left[1-\frac{t}{T}\right]$
Now $\mathrm{R}_{\mathrm{o}}=1$ and $\mathrm{C}=1$
$\therefore \mathrm{T}=3 \mathrm{R}_{\mathrm{o}} \mathrm{C}=3$
$\therefore \mathrm{R}(\mathrm{t})=\left[1-\frac{\mathrm{t}}{3}\right]$
$\& I_{C}(t)=\frac{1}{\left(1-\frac{t}{3}\right)} \times e^{\frac{-t}{\left(1-\frac{t}{3}\right)}}$
At $\mathrm{t}=\frac{\mathrm{T}}{2}=\frac{3}{2} \mathrm{sec}$
$I_{C}(t)=2 e^{-3}$
$=0.099$
$I_{C}(t) \approx 0.1 \mathrm{~mA}$
51. $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$

Voltage across capacitor will be
$V_{C}(t)=10\left(1-e^{-t / R C}\right)$
$R_{C}=500 \times 10 \times 10^{-6}=5 \times 10^{-3} \mathrm{sec}$
At $t=2 \mathrm{~ms}=2 \times 10^{-3} \mathrm{sec}$
$V_{C}(2 \mathrm{~ms})=10\left(1-e^{\frac{-2}{5}}\right)$
$V_{c}(2 \mathrm{~ms})=3.3 \mathrm{~V}$
For $\frac{T}{2}$ to T diode will be off so capacitor will not charge further
$\therefore \mathrm{V}_{\mathrm{c}}(3 \mathrm{msec})=3.3 \mathrm{~V}$
52. By greens theorem

$$
\begin{aligned}
& \int x d y-y d x=0 \quad \text { xdy } \\
& \int(x d y-y d x)=0 \\
& 20 \\
& =\left[2 \times 3+\frac{\pi(1)^{2}}{2}\right] \\
& {\left[6+\frac{\pi}{2}\right]} \\
& \therefore \int(x d y-y d x)=12+\pi
\end{aligned}
$$

53.

Overall $G_{C}(s)=\frac{K}{s\left(s^{2}+3 s+2\right)}$
$\therefore q(s)=s^{3}+3 s^{2}+2 s+k=0$

s^{3}	1	2
s^{2}	3	k
s^{1}	$\frac{6-k}{3}$	
s^{0}	k	

Auxiliary equation is $3 s^{2}+k=0$

And for roots on imaginary axis s^{1} row $=0$
$\therefore \frac{6-\mathrm{k}}{3}=0$
$\therefore \mathrm{k}=6$
54.
$\mathrm{m}(\mathrm{t})$ has frequency range 5 kHz to 15 kHz
Now it is amplitude modulated
$f(t)=A(1+m(t)) \cos 2 \pi f_{c} t$ where $f_{c}=600 k H z$
$\therefore \mathrm{AM}$ signal will have highest frequency $=\mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{m}}(\mathrm{max})$
$=600+15=615 \mathrm{kHz}$
And $A M$ signal will have lowest frequency $=f_{c}-f_{m}(\max)$
$=600-15=585 \mathrm{kHz}$
It is a band pass signal so we use bandpass sampling
$\mathrm{f}_{\mathrm{s}}=1.2 \times \frac{2 \mathrm{fH}}{\mathrm{k}}$
$K=\frac{f_{H}}{f_{H}-f_{L}}$
$=\frac{615}{615-585}$
$K=20.5$
We select $\mathrm{K}=20$
$\therefore \mathrm{f}_{\mathrm{s}}=1.2 \times \frac{2 \times 615}{20}$
$\therefore \mathrm{f}_{\mathrm{s}}=73.8 \mathrm{kHz}$
Now L = 256
And $2^{n}=\mathrm{L}=256$
$\therefore \mathrm{n}=8$
Bitrate $=R_{b}=n f_{s}$
$\therefore \mathrm{R}_{\mathrm{b}}=8 \times 73.8 \times 103$
$\therefore \mathrm{R}_{\mathrm{b}}=0.59 \mathrm{Mbps}$
55.

0 is represented by $\mathrm{p}(\mathrm{t})$
And 1 is represented by $q(t)$
And $\psi_{1}(t)$ and $\psi_{2}(t)$ are orthogonal signal set
(i) $p(t)=\psi_{1}(t)$ and $q(t)=-\psi_{1}(t)$

So signal space diagram will be,

$\therefore \mathrm{dmin}_{1}=2$
(ii) $p(t)=\psi_{1}(t)$ and $q(t)=\sqrt{E} \psi_{2}(t)$

So signal space diagram will be

$\therefore \mathrm{dmin}_{2}=\sqrt{E+1}$
Now bit error probability is same in both cases
$\therefore \mathrm{dmin}_{1}=\mathrm{dmin}_{2}$
$\sqrt{1+E}=2$
$\therefore \mathrm{E}=3$

