

National Testing Agency

Question Paper Name :Fourier Analysis and its ApplicateSubject Name :Fourier Analysis and its ApplicateCreation Date :2020-09-15 13:26:34Duration :180Total Marks :100

Display Marks:

Share Answer Key With Delivery Engine:

Actual Answer Key:

Yes

Yes

Fourier Analysis and its Applications

Group Number: Group Id: 89951411 **Group Maximum Duration:** 0 **Group Minimum Duration:** 120 **Show Attended Group?:** No **Edit Attended Group?:** No **Break time:** 0 **Group Marks:** 100 Is this Group for Examiner?: No

Fourier Analysis and its Applications

Section Id: 89951411

Section Number:

Section type: Online
Mandatory or Optional: Mandatory

Number of Questions: 70

www.FirstRanker.com

Number of Questions to be attempted: 50
Section Marks: 100
Display Number Panel: Yes
Group All Questions: Yes
Mark As Answered Required?: Yes
Sub-Section Number: 1
Sub-Section Id: 89951420
Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 899514871 Question Type: MCQ Option Shuffling: No Display Questi Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The constant term in the Fourier series expansion of $f(x) = |x|^3$ on the interval $[-\pi, \pi]$

equals:

A π^3

B $\pi^3/2$

 $C = \pi^3/3$

D $\pi^3/4$

Options:

8995143461.1

8995143462.2

8995143463.3

8995143464.4

Question Number: 2 Question Id: 899514872 Question Type: MCQ Option Shuffling: No Display Question Type: MCQ Option Shuffling: McQ

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

www.FirstRanker.com

9/16/2020

The value of $1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ equals:

- A $\pi^2/6$
- B $\pi^{2}/8$
- $C \pi^2/16$
- $D \pi^2/18$

Options:

8995143465.1

8995143466.2

8995143467.3

8995143468.4

Question Number: 3 Question Id: 899514873 Question Type: MCQ Option Shuffling: No Display Questi

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Supply the constant b in the following formula:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = |a_0|^2 + b \sum_{1}^{\infty} (|a_n|^2 + |b_n|^2)$$

- A 1
- $B \frac{1}{2}$
- Сπ
- $D \frac{\pi}{2}$

Options:

8995143469.1

8995143470.2

8995143471.3

Correct Marks: 2 Wrong Marks: 0

The n-th Legendre polynomial is $P_n(x)$. Then the value of $P_n(-1)$ equals:

- A 1
- B $(-1)^n$
- $C = \frac{1}{2^{n_n!}}$
- D $2^n n!$

Options:

8995143473. 1

8995143474. 2

8995143475.3

8995143476.4

Question Number : 5 Question Id : 899514875 Question Type : MCQ Option Shuffling : No Display Questi Mandatory : No Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 2 Wrong Marks: 0

What is the value of $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$?

- A e
- B =
- C 1
- D \sqrt{e}

Options:

8995143477. 1

8995143478.2

8995143479.3

9/16/2020

Correct Marks: 2 Wrong Marks: 0

Which of the following is Fejer's kernel?

A
$$\frac{1}{2(n+1)} \left(\sin \frac{(n+1)\theta}{2} \right)^2 \left(\sin \frac{\theta}{2} \right)^{-2}$$

$$\mathsf{B} \quad \frac{1}{(n+1)} \bigg(\sin \frac{(n+1)\theta}{2} \bigg)^2 \bigg(\sin \frac{\theta}{2} \bigg)^{-2}$$

$$\frac{1}{2\pi} \left(\sin \frac{(n+1)\theta}{2} \right)^2 \left(\sin \frac{\theta}{2} \right)^{-2}$$

D
$$\frac{1}{2(n+1)\pi} \left(\sin\frac{(n+1)\theta}{2}\right)^2 \left(\sin\frac{\theta}{2}\right)^{-2}$$

Options:

8995143481.1

8995143482.2

8995143483.3

8995143484.4

Question Number: 7 Question Id: 899514877 Question Type: MCQ Option Shuffling: No Display Questi

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The behavior of the Fejer kernel $K_n(t)$ near t=0 is

Options:

8995143485.1

8995143486. 2

8995143487.3

8995143488.4

Question Number: 8 Question Id: 899514878 Question Type: MCQ Option Shuffling: No Display Questi Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Weyl's equi-distribution theorem is a sharpening of

- A Weierstrass's approximation theorem
- B Kronecker's theorem
- C Riemann Lebesgue Lemma
- Parseval's theorem

Options:

8995143489. 1

8995143490, 2

9/16/2020

8995143492. 4

Question Number: 9 Question Id: 899514879 Question Type: MCQ Option Shuffling: No Display Questi

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is FALSE?

- A $\{n + m\pi : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}
- B $\{n [n\pi] : n \in \mathbb{N}\}$ is dense in [0, 1]
- C $\{n+22m/7: m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}
- D $\{q [qn] : n \in \mathbb{N}\}$ is dense in [0, 1], where q is any irrational number

Options:

8995143493.1

8995143494. 2

8995143495.3

8995143496.4

Question Number: 10 Question Id: 899514880 Question Type: MCQ Option Shuffling: No Display Question Number: 10 Question Id: 899514880 Question Type: MCQ Option Shuffling: No Display Question Type: MCQ Option Shuffling: MCQ Option Shuffling:

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following functions is not in the Schwartz's class?

- A $1/(\cosh x)$
- B $x/\sinh x$
- C $\sinh x / \cosh x$
- D $x^{100}/\cosh x$

Options:

8995143497. 1

8995143498.2

8995143499.3

www.FirstRanker.com

9/16/2020

Question Number: 11 Question Id: 899514881 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The function f(x) equals 1 on the interval [-1,1] and is zero outside this interval. The Fourier transform of f(x) equals

- A $\sin \xi/\xi$
- B $2\sin \xi/\xi$
- C $\cos \xi/\xi$
- D $\sin \xi$

Options:

8995143501.1

8995143502.2

8995143503.3

8995143504.4

Question Number: 12 Question Id: 899514882 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Fourier transform of e^{-x^2} is $\sqrt{\pi}e^{-bx^2}$. Then the value of b equals

- A 1/4
- B 4
- C 1
- D 1/2

Options:

8995143505.1

8995143506. 2

8995143507.3

8995143508.4

Question Number: 13 Question Id: 899514883 Question Type: MCQ Option Shuffling: No Display Question And Advanced Control of the Control of th

9/16/2020

Supply the value of the constant c in the following formula (where f(x) is in the Schwartz's class) $\hat{f}(x) = cf(-x)$

- 2π Α
- В π
- C $\pi/2$
- D 1

Options:

8995143509.1

8995143510.2

8995143511.3

8995143512.4

Question Number: 14 Question Id: 899514884 Question Type: MCQ Option Shuffling: No Display Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is NOT the Fourier transform of a function in $L^2(\mathbb{R})$

- $|\xi|/(1+\cosh\xi)$
- $|\xi|/(1+|\xi|^2)$
- $\sin \xi / |\xi|$ C
- tanh ξ D

Options:

8995143513.1

8995143514. 2

8995143515.3

8995143516.4

Question Number: 15 Question Id: 899514885 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Given that $J_0'(x) = J_p(x)$ (where $J_p(x)$ denotes the Bessel function of order p, the value of p equals:

- A -1
- B 1
- C 2
- C -3

Options:

8995143517.1

8995143518.2

8995143519.3

8995143520.4

Question Number: 16 Question Id: 899514886 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following differential equations is invariant under the Fourier transform?

- A Airy's equation
- B Hermite's equation
- C Legendre's equation
- D Tchebychev'

Options:

8995143521.1

8995143522. 2

8995143523.3

8995143524.4

Question Number: 17 Question Id: 899514887 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

If $(f_n(x))$ is an orthonormal sequence of functions in $L^2[0,1]$ then which of the following is always true?

- A The sequence converges in norm
- B The sequence converges weakly
- C The sequence converges pointwise
- D The sequence converges uniformly

Options:

8995143525.1

8995143526. 2

8995143527.3

8995143528.4

Question Number: 18 Question Id: 899514888 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Consider the function $f(x) = 1 - \cos x + \frac{1}{3}(\sin 3x - \cos 3x)$. The value of $\int_{-\pi}^{\pi} |f(x)|^2 dx$ equals:

- Α 20π
- B 23π
- c 26π
- $D = \frac{29\pi}{9}$

Options:

8995143529.1

8995143530.2

8995143531.3

Mandatory: No Single Line Question Option: No Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0

Given that $J_0(x) = 1/\pi \int_0^{\pi} \cos(x \sin \theta) d\theta$. Which of the following is true?

A
$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{x}{2}\right)^{2n}$$

B
$$J_0(x) = \sum_{0}^{\infty} \frac{1}{n!^2} \left(\frac{x}{2}\right)^{2n}$$

$$\int_{0}^{C} J_{0}(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x}{2}\right)^{2n}$$

C
$$J_0(x) = \sum_{0}^{\infty} \frac{1}{n!} \left(\frac{x}{2}\right)^{2n}$$

D $J_0(x) = \sum_{0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{x}{2}\right)^{2n}$

Options:

8995143533.1

8995143534.2

8995143535.3

8995143536, 4

Question Number: 20 Question Id: 899514890 Question Type: MCQ Option Shuffling: No Display Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0

Let X be the Banach space of continuous functions f(x) on $[-\pi, \pi]$ such that $f(\pi) = f(-\pi)$ endowed with the supremum norm and S be the subset of X consisting of all the functions in X whose Fourier series converges pointwise everywhere. Then

- A S equals X.
- B S is not equal to X but S is a countable intersection of dense open sets in X.
- C X S is dense in X
- X-S is a countable union of closed sets each having empty interior in X

8995143537.1

8995143538. 2

8995143539.3

8995143540.4

Question Number: 21 Question Id: 899514891 Question Type: MCQ Option Shuffling: No Display Question Value of the Company of th

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following represents the Poisson Kernel?

$$A \quad \frac{1}{2\pi} \quad \frac{1-r^2}{1+r^2-2r\cos\theta}$$

$$B \quad \frac{1}{\pi} \quad \frac{1 - r^2}{1 + r^2 - 2r\cos\theta}$$

C
$$\frac{1}{2\pi} \frac{1+r^2-2r\cos\theta}{1+r^2-2r\cos\theta}$$

D
$$\frac{1}{\pi} \frac{1+r^2}{1+r^2-2\cos\theta}$$

Options:

8995143541.1

8995143542. 2

8995143543.3

8995143544.4

Question Number: 22 Question Id: 899514892 Question Type: MCQ Option Shuffling: No Display Question Number: 22 Question Id: 899514892 Question Type: MCQ Option Shuffling: No Display Question Id: No

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

9/16/2020

The Lebesgue constants are the numbers $L_n = \int_0^{\pi} |D_n(t)| dt$ where $D_n(t)$ is the Dirichlet kernel. Which of the following is true?

- A $\sum_{0}^{\infty} L_n$ converges.
- B $L_n \sim c \log n$ for some constant c and for large n
- C $L_n \to 0$ as $n \to \infty$
- D $L_n \sim c \sqrt{n} \log n$ for large n

Options:

8995143545.1

8995143546.2

8995143547.3

8995143548.4

Question Number: 23 Question Id: 899514893 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Consider the solution u(x,y) of $\Delta u=0$ on $\{(x,y): x^2+y^2<1\}$ and $u(\cos\theta$, $\sin\theta)=|\sin\theta|$. Then the value of u(0,0) equals:

- A $\frac{\pi}{2}$
- B 1/π
- $C 2/\pi$
- D π

Options:

8995143549.1

8995143550.2

8995143551.3

8995143552.4

Question Number: 24 Question Id: 899514894 Question Type: MCQ Option Shuffling: No Display Quest

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Consider the functions x^n on $L^2(-1,1)(n=0,1,2,3,...)$. When these are subjected to the Gram-Schmidt process the resulting functions are $f_n(x)$. Then which of the following is true?

- A The $f_n(x)$ are the Legendre polynomials
- B The $f_n(x)$ are the Tchebycheff's polynomials
- C The $f_n(x)$ are the Hermite polynomials
- D The $f_n(x)$ are the Laguerre polynomials

Options:

8995143553.1

8995143554.2

8995143555.3

8995143556, 4

Question Number: 25 Question Id: 899514895 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

A solution to the wave equation $u_{tt}-c^2\Delta u=0$ are sought in the form $u(x,\ y,\ t)=e^{ikt}\ v(x,y)$. Then $v(x,\ y)$ satisfies which of the following equations?

 $A \quad \Delta v - (k^2/c^2)v = 0.$

B $\Delta v + (k^2/c^2)v = 0$.

 $C \quad \Delta v + k^2 v = 0.$

 $D c^2 \Delta v + v = 0.$

Options:

8995143557. 1

8995143558.2

8995143559.3

8995143560.4

Question Number: 26 Question Id: 899514896 Question Type: MCQ Option Shuffling: No Display Question And Advanced Property of the Company of t

Coefficients a_n,b_n in the Fourier series expansion of a 2π periodic function behave like n^{-2-c} where c is a positive number. Then which of the following is true?

- A The sun of the series is continuous but not uniformly continuous.
- B The sun of the series is uniformly continuous but not absolutely continuous.
- C The sun of the series is absolutely continuous but not continuously differentiable
- D The sun of the series is continuously differentiable.

Options:

8995143561.1

8995143562. 2

8995143563.3

8995143564.4

Question Number: 27 Question Id: 899514897 Question Type: MCQ Option Shuffling: No Display Quest

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following functions is in the Schwartz's class? Here $\Gamma(\xi)$ is the Gamma function and its reciprocal is assigned value 0 at the 0 and the negative integers.

- A $\sin \xi / \xi$
- B $\sin \xi/(1+\xi^2)$
- C $\sin \xi/(\Gamma(1+\xi^2))$
- D $(\sin \xi) \exp(-|\xi|)$

Options:

8995143565.1

8995143566. 2

8995143568. 4

Question Number: 28 Question Id: 899514898 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is true about the Fourier transform as an operator from

 $L^2(\mathbb{R})$ to itself

A It is unitary

B It is selfadjoint

C It is a compact operator

D It is an unbounded operator.

Options:

8995143569.1

8995143570.2

8995143571.3

8995143572.4

Question Number: 29 Question Id: 899514899 Question Type: MCQ Option Shuffling: No Display Question Address: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The value of
$$\int_0^{2\pi} \frac{d\theta}{(1+r^2-2r\cos\theta)}$$
 equals:

A
$$2\pi/(1+r^2)$$

B
$$2\pi/(1-r^2)$$

C
$$\pi/(1+r^2)$$

D
$$\pi/(1-r^2)$$

Options:

8995143573.1

8995143574.2

8995143575.3

9/16/2020

Question Number: 30 Question Id: 899514900 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Apply the Parseval formula to the function f(x) = x/|x|, f(0) = 0 on $[-\pi, \pi]$. Which of the following do you deduce as the value of

$$1 + \frac{1}{3^2} + \frac{1}{5^2} \dots$$

- A $\pi^2/3$
- B $\pi^2/4$
- $C \pi^2/6$
- $D \pi^{2}/8$

Options:

8995143577.1

8995143578.2

8995143579.3

8995143580.4

Question Number : 31 Question Id : 899514901 Question Type : MCQ Option Shuffling : No Display Question Option : No Option Orientation : Vertical

Correct Marks: 2 Wrong Marks: 0

For a compact operator on in $L^2[0,1]$ which of the following is false?

- A The spectrum is non-empty
- B The spectrum can be uncountable
- C The spectrum is at most countable
- D The spectrum in certain cases can be {0}

Options:

8995143581.1

8995143582. 2

8995143583.3

Question Number: 32 Question Id: 899514902 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The polynomials $\exp(\frac{x}{2}) \left(\frac{d}{dx}\right)^n (x^n \exp(-(\frac{x}{2})))$ satisfies which of the following equations?

- A Legendre equation
- B Hermite's equation
- C Laguerre equation
- D Tchebychev's equation

Options:

8995143585.1

8995143586, 2

8995143587.3

8995143588.4

Question Number : 33 Question Id : 899514903 Question Type : MCQ Option Shuffling : No Display Question Option : No Option Orientation : Vertical

Correct Marks: 2 Wrong Marks: 0

Given that $f(x) = \exp(-|x|)$ what is the value of $\hat{f}(0)$? Here \hat{f} is the Fourier transform of f

- A 1
- B 2
- C π
- D 2π

Options:

8995143589. 1

8995143590.2

8995143591.3

Correct Marks: 2 Wrong Marks: 0

Given that $x^6 = c_6 P_6(x) + c_5 P_5(x) + \dots + c_0 P_0(x)$ where $P_n(x)$ is the n-th Legendre polynomial, the value of c_6 equals:

- A 16/191
- B 16/211
- C 16/231
- D 16/251

Options:

8995143593.1

8995143594.2

8995143595.3

8995143596.4

Question Number : 35 Question Id : 899514905 Question Type : MCQ Option Shuffling : No Display Question Option : No Option Orientation : Vertical

Correct Marks: 2 Wrong Marks: 0

What is the value of $2\int_0^1 P_5(x)dx$? Here $P_n(x)$ is the n-th Legendre polynomial.

- A 1/8
- B 1/16
- C 1/32
- D 0

Options:

8995143597.1

8995143598.2

8995143599.3

8995143600.4

Question Number: 36 Question Id: 899514906 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

9/16/2020

The n-th Legendre polynomial is $P_n(x)$. Then the value of $P'_{11}(-1)$ equals

- A 55
- B 66
- C 50
- D 60

Options:

8995143601.1

8995143602.2

8995143603.3

8995143604.4

Question Number: 37 Question Id: 899514907 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following statement about the Volterra operator $T: L^2[0,1] \to L^2[0,1]$ is true?

- A It has no eigen-values
- B It is selfadjoint
- C It is a bounded non-compact operator
- D 0 is in the spectrum of T

Options:

8995143605.1

8995143606. 2

8995143607.3

8995143608.4

Question Number: 38 Question Id: 899514908 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Which of the following is a trigonometric polynomial on $[-\pi, \pi]$

- A $\sin(\frac{x}{3})$
- B $\sin^3 x$
- C $\sin^{1/3} x$
- D $\sin \sqrt{3}x$

Options:

8995143609.1

8995143610.2

8995143611.3

8995143612.4

Question Number: 39 Question Id: 899514909 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

If $f(x) = 1/(1+x^2)$ then what is the value of f * f(0)? Note f * g denotes the convolution of f and g

- Α 2π
- Β π
- $C = \frac{\pi}{2}$
- D $\frac{\pi}{4}$

Options:

8995143613.1

8995143614. 2

8995143615.3

8005143616 4

Question Number: 40 Question Id: 899514910 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The function f(x) equals 1 on the interval [-1,1] and is zero outside this interval. What is the Fourier transform of f*f. Note f*g denotes the convolution of f and g

- A $\frac{\sin^2 \xi}{\xi}$
- B $\frac{2\sin^2 \xi}{\xi}$
- $C = \frac{2\sin^2 \xi}{\xi^2}$
- $D = \frac{4\sin^2 \xi}{\xi^2}$

Options:

8995143617.1

8995143618.2

8995143619.3

8995143620.4

Question Number: 41 Question Id: 899514911 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

A sequence $(v_n(x))$ of functions in $L^2[0,1]$ converges to v(x) weakly. Which of the following is true?

- A The sequence is norm convergent
- B A subsequence converges pointwise
- C The sequence converges pointwise
- D The sequence is norm-bounded

8995143622. 2

8995143623.3

8995143624.4

Question Number: 42 Question Id: 899514912 Question Type: MCQ Option Shuffling: No Display Quest

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is an even function?

- A $J_0'(x)$
- B $P_4'(x)$
- C Fourier transform of an even function
- D Fourier transform of an odd function

Options:

8995143625.1

8995143626.2

8995143627.3

8995143628.4

Question Number: 43 Question Id: 899514913 Question Type: MCQ Option Shuffling: No Display Question Number: 43 Question Id: 899514913 Question Type: MCQ Option Shuffling: No Display Question Id: No

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is Luzin's theorem?

- A C[0,1] is dense in $L^2[0,1]$ with respect to L^2 norm
- B Polynomials are dense in $L^2[0,1]$ with respect to L^2 norm
- C Polynomials are dense in C[0,1] with respect to supremum norm
- D C[0,1] is dense in $L^{\infty}[0,1]$ with respect to L^{∞} norm

Options:

8995143629.1

8995143630.2

8995143631.3

Question Number: 44 Question Id: 899514914 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Fourier transform of a radial function is

- A Always radial and given by a sine transform
- B Always radial and given by a Bessel transform in two dimensions
- C Always radial and given by a Bessel transform in three dimensions
- D Always radial and given by a cosine transform

Options:

8995143633.1

8995143634.2

8995143635.3

8995143636.4

Question Number : 45 Question Id : 899514915 Question Type : MCQ Option Shuffling : No Display Question Option : No Option Orientation : Vertical

Correct Marks: 2 Wrong Marks: 0

For the heat equation $u_t - u_{xx} = 0$ with initial condition u(x, 0) = f(x). Assume that f(x) is positive outside (-1, 1) and zero in (-1, 1). Then

- A u(x,t) is positive for all $x \in \mathbb{R}$ and for all positive t
- B u(x,t) is positive only for x outside (-1,1) and for all positive t
- C u(x,t) is positive only for x outside (-2,2) and for all positive t
- D u(x,t) is positive only for x outside (0,2) and for all positive t

Options:

8995143637.1

8995143638. 2

8995143639.3

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

For the wave equation $u_{tt} - u_{xx} = 0$ with initial conditions in the Schwartz class, assume that E(t) is the total energy and K(t) is the kinetic energy. Then, which of the following is false?

- A E(t) is constant in time
- B K(t) is not constant in time
- C K(t) approaches E(0) as time goes to infinity
- D K(t) approaches E(0)/2 as time goes to infinity

Options:

8995143641.1

8995143642.2

8995143643.3

8995143644. 4

Question Number: 47 Question Id: 899514917 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The sum $1 + 2\cos 2x + 2\cos 4x + \cdots + 2\cos 2nx$ equals:

$$A \frac{\sin(nx+x)}{\sin x}$$

$$\frac{\sin(2nx+x)}{\sin x}$$

$$C = \frac{\sin(2nx)}{\sin x}$$

$$D \frac{\sin(nx)}{\sin x}$$

8995143646. 2

8995143647.3

8995143648.4

Question Number: 48 Question Id: 899514918 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is true about the n-th Legendre polynomial?

- A It has n distinct roots in (-1, 1)
- B It has +1 as a simple root
- C It has a double root at the origin
- D It has a double root at both 1 and -1

Options:

8995143649.1

8995143650.2

8995143651.3

8995143652.4

Question Number: 49 Question Id: 899514919 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Suppose T_n is a sequence of continuous linear maps from a Banach space X into \mathbb{R} such that for each $x \in X$ the sequence $T_n(x)$ is bounded then which of the following is false?

- A $||T_n||$ is bounded
- B $||T_n(x)||$ has a bound independent of x for all $||x|| \le 1$
- C $||T_n||$ converges
- D $||T_n||$ has a convergent subsequence.

Options:

8995143655. 3 8995143656. 4

Question Number: 50 Question Id: 899514920 Question Type: MCQ Option Shuffling: No Display Quest

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The Banach Steinhaus's theorem implies

- A Existence of a continuous function on $[-\pi, \pi]$ whose Fourier series converges uniformly
- B Existence of a continuous function on $[-\pi, \pi]$ whose Fourier series converges pointwise
- C Existence of a continuous function on $[-\pi, \pi]$ whose Fourier series diverges at a specific point.
- D Existence of a continuous function on $[-\pi, \pi]$ whose Fourier series diverges everywhere.

Options:

8995143657.1

8995143658. 2

8995143659.3

8995143660, 4

Question Number: 51 Question Id: 899514921 Question Type: MCQ Option Shuffling: No Display Question Option of No Option Option (No Option of No Opti

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is not a trigonometric polynomial on $[-\pi,\pi]$

- A $\cos 5x$
- B $\cos^{1/5} x$
- $C \cos^5 x$
- D $5\cos x$

Options:

8995143661.1

8995143664.4

Question Number: 52 Question Id: 899514922 Question Type: MCQ Option Shuffling: No Display Question AddressMandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The Fourier transform of the function $f(x) = e^{-|x|}$ equals:

- A $2/(1+\xi^2)$
- B $\xi/(1+\xi^2)$
- C $1/(1+\xi^2)$
- D $\pi/(1+\xi^2)$

Options:

8995143665. 1

8995143666. 2

8995143667.3

8995143668.4

Question Number: 53 Question Id: 899514923 Question Type: MCQ Option Shuffling: No Display Question Address: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following about the Bessel's function $J_p(z)$ is false?

- A It is an entire function of z for positive integer values of p
- B It is not an entire function of z for non-integer values of p
- C It is an entire function of z for negative integer values of p
- D It is not an entire function of z for any value of p

Options:

8995143669.1

8995143670.2

www.FirstRanker.com

9/16/2020

Question Number: 54 Question Id: 899514924 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The Weierstrass's approximation theorem implies

- A The separability of C[0,1]
- B The separability of $L^{\infty}[0,1]$
- C That C[0,1] is not separable
- D That $L^1[0,1]$ is not separable.

Options:

8995143673.1

8995143674.2

8995143675.3

8995143676, 4

Question Number: 55 Question Id: 899514925 Question Type: MCQ Option Shuffling: No Display Question Additional Shuffling: No Display Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is the Bessel's equation of order p?

A
$$x^2y'' + xy' + (x^2 + p^2)y = 0$$

B
$$x^2y'' - xy' + (x^2 - p^2)y = 0$$

$$x^2y'' - xy' + (x^2 + p^2)y = 0$$

D
$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

Options:

8995143677.1

8995143678. 2

8995143679.3

9/16/2020

Correct Marks: 2 Wrong Marks: 0

For vectors v and w in a Hilbert space, given that ||v|| = 4, ||w|| = 4 and ||w - v|| = 3. Then what is the value of ||w + v||?

- A $\sqrt{47}$
- B √51
- C √53
- D √55

Options:

8995143681.1

8995143682.2

8995143683.3

8995143684.4

Question Number: 57 Question Id: 899514927 Question Type: MCQ Option Shuffling: No Display Question And Advisor Shuffling: No Display Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

If $F(\xi)$ is the Fourier transform of f(x) then the Fourier transform of f''(x) equals:

- A $-i\xi^2 F(\xi)$
- B $i\xi^2 F(\xi)$
- $C \xi^2 F(\xi)$
- D $\xi^2 F(\xi)$

Options:

8995143685.1

8995143686.2

8995143687.3

Question Number: 58 Question Id: 899514928 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

If $F(\xi)$ is the Fourier transform of f(x) then the Fourier transform of $x^2 f(x)$ equals:

- $A = -iF''(\xi)$
- B $iF''(\xi)$
- $C -F''(\xi)$
- D $F''(\xi)$

Options:

8995143689.1

8995143690.2

8995143691.3

8995143692.4

Question Number: 59 Question Id: 899514929 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is true?

- A $C[-\pi,\pi]$ with respect to sup norm has countable Hamel basis
- B $C[-\pi,\pi]$ with respect to sup norm has uncountable Hamel basis
- C The set of all polynomials has uncountable Hamel basis
- D $L^{\infty}[-\pi,\pi]$ with respect to L^{∞} norm has countable Hamel basis

Options:

8995143693.1

8995143694.2

8995143695.3

Correct Marks: 2 Wrong Marks: 0

Let y(x) be a solution of the differential equation y'' + xy = 0. Then which of the following is true?

- A The zeros of y(x) form a finite set
- B The zeros of y(x) are equally spaced
- C The zeros (z_n) of y(x) are countable discrete increasing sequence and $|z_n z_{n-1}|$ tends to zero as n tends to infinity.
- D The zeros of y(x) have a finite limit point

Options:

8995143697.1

8995143698. 2

8995143699.3

8995143700.4

Question Number: 61 Question Id: 899514931 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is an essential hypothesis on a metric space X in order to apply the Baire Category theorem?

- A X is complete
- B X is locally connected
- C X is connected
- D X is separable

Options:

8995143701.1

8995143702.2

8995143703.3

8995143704.4

Question Number: 62 Question Id: 899514932 Question Type: MCO Option Shuffling: No Display Question Andatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Given that F is the Fourier transform of a Schwartz function f

Supply the value of c in the following formula

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = c \int_{-\infty}^{\infty} |F(\xi)|^2 d\xi$$

- A 2π
- B $\sqrt{2\pi}$
- $C (2\pi)^{-1}$
- D $\left(\sqrt{2\pi}\right)^{-1}$

Options:

8995143705.1

8995143706.2

8995143707.3

8995143708.4

Question Number: 63 Question Id: 899514933 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Given that $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ which of the following always hold? Here $F(\xi)$ is the Fourier transform of f

- A $F(\xi) \in L^1(\mathbb{R})$
- B $F(\xi)$ is uniformly continuous
- $C F \notin L^2(\mathbb{R})$
- D $F(\xi)$ is absolutely continuous

8995143710.2

8995143711.3

8995143712.4

Question Number: 64 Question Id: 899514934 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Which of the following is the Legendre's differential equation?

A
$$(1-x^2)y'' + 2xy' + p(p+1)y = 0$$

B
$$(1-x^2)y'' - 2xy' + p(p+1)y = 0$$

C
$$(1+x^2)y'' + 2xy' + p(p+1)y = 0$$

D
$$(1+x^2)y'' - 2xy' + p(p+1)y = 0$$

Options:

8995143713.1

8995143714.2

8995143715.3

8995143716.4

Question Number: 65 Question Id: 899514935 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The function $|x|^2$ defined on $[-\pi,\pi]$ and extended as a 2π periodic function is

- A Holder continuous but not Lipschitz continuous
- B Continuously differentiable
- C Not Lipschitz continuous
- D Lipschitz continuous but not continuously differentiable

8995143718. 2

8995143719.3

8995143720.4

Question Number: 66 Question Id: 899514936 Question Type: MCQ Option Shuffling: No Display Question Type: MCQ Option Shuffling: McQ Option Shu

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The Fourier series of the function $|x|^3$ on $[-\pi, \pi]$ converges

- A Conditionally and non-uniformly
- B Absolutely and uniformly
- C Absolutely but not uniformly
- D Uniformly but not absolutely

Options:

8995143721.1

8995143722.2

8995143723.3

8995143724.4

Question Number: 67 Question Id: 899514937 Question Type: MCQ Option Shuffling: No Display Question Number: 67 Question Id: 899514937 Question Type: MCQ Option Shuffling: No Display Question Id: 899514937 Question Type: MCQ Option Shuffling: No Display Question Id: 899514937 Question Id: 89951493 Question Id: 8995149 Question Id: 8995149

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

To conclude that a compact operator has an orthonormal basis of eigen-vectors which of the following hypothesis is sufficient?

- A The operator is self-adjoint
- B The operator is normal
- C The operator is unitary
- D The operator is positive

www.FirstRanker.com

9/16/2020

8995143725. 1

8995143726. 2

8995143727.3

8995143728.4

Question Number: 68 Question Id: 899514938 Question Type: MCQ Option Shuffling: No Display Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

Consider the function $f(x) = \pi - x$ on $(0, \pi)$ and $f(x) = -(\pi + x)$ on $(-\pi, 0)$. The Fourier series for the function is

$$\int_{-\infty}^{\infty} \frac{\sin(nx)}{2n}$$

$$\sum_{1}^{\infty} \frac{\sin(nx)}{n}$$

$$\sum_{n=0}^{\infty} \frac{\sin(nx)}{n}$$

D
$$\sum_{1}^{\infty} \frac{\sin(2nx)}{n}$$

Options:

8995143729.1

8995143730.2

8995143731.3

Correct Marks: 2 Wrong Marks: 0

Parseval formula applied to $f(x) = x^2$ give the value of

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$
 as

- A $\frac{\pi^4}{90}$
- B $\frac{\pi^4}{96}$
- C $\frac{\pi^4}{98}$
- D $\frac{\pi^4}{112}$

Options:

8995143733.1

8995143734.2

8995143735.3

8995143736.4

Question Number: 70 Question Id: 899514940 Question Type: MCQ Option Shuffling: No Display Quest Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 2 Wrong Marks: 0

The coefficient of cos(2n-1)x in the Fourier series of cos ax (a is not an integer) is:

- A $a(\sin a\pi)/(\pi((2n-1)^2-a^2))$
- B $-a/(\pi((2n-1)^2-a^2))$
- C $-2 a (\sin a\pi) / (\pi((2n-1)^2 a^2))$
- D 2 a $(\sin a\pi)/(\pi((2n-1)^2-a^2))$

www.FirstRanker.com

9/16/2020

8995143738. 2

8995143739.3