

www.FirstRanker.com

DU MCA

Sr.No	Questio n Id	Question Description	Question Body	Options
1	13859	DU_J19_MC A_Q01	The system of linear equations $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & \lambda - 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ \lambda \end{pmatrix}$	25433:Unique solution i 25434:no solution if λ=
			has	25435:Infinitely many s
				25436:infinitely many s
2	13860	DU_J19_MC A_Q02	Let $z=x+iy$ and $z^{1/2}=p-iq$. If $\frac{x}{p}-\frac{y}{q}=\lambda(p^2-q^2)$, then λ is equal to	25437:2,
				25438:4,
				25439:-4,

				25440:-2,
3	13861	DU_J19_MC A_Q03	Let $z = \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right)$. Then the principal argument of $(1-z^2)$ is equal to	3 # :,
			(1)	$\frac{4\pi}{7}$:,
			110	$\frac{11\pi}{14}$,
				5π 1:,
4	13862	DU_J19_MC A_Q04	The set of all $\lambda \in \mathbb{R}$ such that the sequence (a_n) , where, $a_n = \sqrt{\lambda^2 n^2 + n + 1} - n$, $n \in \mathbb{N}$, is convergent	25445:is an empty set,
				25446:is a singleton,
				25447:contains exactly 1 and 1,
				25448:is equal to <i>R</i> ,
				J

5	13863	DU_J19_MC A_Q05		(2 3 -4)	25449:,
			Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x) = Mt$, where $M = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -1 & -3 \end{pmatrix}$. Then which one of the following vectors can NOT be in the range of T ?	$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$	25450:,
			To,	$\begin{pmatrix} -1\\0\\5\end{pmatrix}$	25451:,
			CHI ON	$\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$	25452:,
6	13864	DU_J19_MC		25453:is not di	agonaliza
		A_Q06	Let $\alpha \neq 0, \alpha \in \mathbb{R}$. Then the matrix $M = \begin{bmatrix} \alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha \end{bmatrix}$	25454:is an ide	
				25455:is nilpot	ent,
				25456: has diffe characteristic p	
7	13865	DU_J19_MC A_Q07	The complex number $\frac{2-i\sqrt{3}}{r}$ is the root of the quadratic equation with real coefficients	25457:,	43

			1+i√3 described by	25458:,	2:
			unditionly.	25459:,	4x2
			The same	25460:,	$2x^2$
8	13866	DU_J19_MC A_Q08	Sign	25461:,	a hyperbo
			The locus of the point (u, β) such that the line $y = \alpha x + \beta$ becomes a tangent to the hyperbola $8x^2 - 4y^2 = 36$, is	25462:,	a hyperbola
				25463:,	an ellipse with let
				25464:,	an ellipse wit
9	13867	DU_J19_MC A_Q09	Using the 2-point Gauss quadrature $\int_{0}^{2} \cos^{2}x dx$ is equal to	25465:,	$\cos^2\left(-\frac{1}{\sqrt{3}}\right)$
				25466:,	$\cos^2\left(\frac{1}{\sqrt{3}}\right)$

					25467:,	$\sin^2\left(-\frac{1}{\sqrt{3}}\right)$
					25468:,	$\cos^2\left(-\frac{1}{\sqrt{3}}\right)$
	10	13868	DU_J19_MC A_Q10		25469:,	
				If the non-zero solution $y(x)$ of the differential equation $\frac{dy}{dt} = \frac{y^1}{e^{2x} + y^2}$ passes through the points $(0, 1)$ and $\left(\alpha, \frac{1}{\sqrt{e}}\right)$, then α is equal to	25470:,	
			1		25471:,	
					25472:,	
	11	13869	DU_J19_MC A_Q11		25473:,	2
				. Let $\lambda \in \mathbb{R}$, and $f(\mathbb{R}^3 \to \mathbb{R})$ be a function defined by $f(x,y,z) = x^3y + y^3z + z^2x - \lambda(xyz)$. If the directional derivative of f at the point $P(1,-1,-1)$ in the direction of the unit vector $\hat{\mathbf{a}} = \frac{2}{3}\hat{\mathbf{f}} - \frac{2}{3}\hat{\mathbf{f}} + \frac{1}{3}\hat{\mathbf{f}}$ is -10 , then the gradient of f at P is equal to	25474:,	-10î +
					25475:,	6î– 4 <i>î</i>
ı	1 1	I	1	1	1	

				25476:,	$-6i + 8\hat{j}$
12	13870	DU_J19_MC A_Q12	Let the function $f(x,y)$ possesses continuous first order partial derivatives and	25477:,	(⁵ ₋₂)
			$\nabla f'(2t, -100) = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$. If $g(x, y) = f(xy^2, 2x^2y)$, then $\nabla g(3, -2)$ is equal to	25478:,	(100 -200)
			H. O.	25479:,	(-60 -100
				25480:,	(-100 200
13	13871	DU_J19_MC A_Q13	2	25481:,	
			If $f(x) = e^{g(x)}$ and $g(x) = \int_{-2}^{x} \frac{dt}{\sqrt{1+t^2}}$ then the value of the derivative $f'(2)$ is equal to	25482:,	
				25483:,	
				25484:,	

14	13872	DU_J19_MC A_Q14		25485:(3,	4) ,
			If $y(x)=ne^{-2\pi i}$ is a solution of the differential equation $\frac{d^3 f}{dx^2}+p\frac{dy}{dt}+(q+1)y=0$ then the ordered pair (p,q) is equal to	25486:(4,	3) ,
			YE,	25487:(2,	-1),
			SILO.	25488:(-4	, 5) ,
15	13873	DU_J19_MC A_Q15	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{x^2 - x\sqrt{y}}{x^2 + y} & x \in \mathbb{R}, y \ge 0, (x,y) \ne (0,0) \\ 0 & \text{otherwise} \end{cases}$	25489:,	f is not conti
			Then, which one of the following is NOT correct?	25490:,	$f_x(0,0) doo$
				25491:,	$f_{y}(0,0)$
				25492:,	$f_{x}(0,0)+f$
16	13874	DU_J19_MC A_Q16	Which one of the following is NOT a correct statement?		on-cyclic grou er subgroups
I	I	I	l	I	

FIR	FirstRanker.co	m
	Firstranker's choice	*****
		www

				25494: Every finite cyclic even number of generat
			CO.	25495:Infinite cyclic gro two generators,
			"YE"	25496:Every non-trivial least two distinct subgro
17	7	13875	$A_{Q17}^{DU_{Q19}MC}$ Let $\Gamma:R^i\to R^i$ be a linear transformation defined by $\Gamma(x,y,z)=(x,y,z)$	-NJ-11-NH 25497:(0, 3),
			$rank(T) = \rho$ and $mility(T) = \tau$, then the ordered pair (ρ, τ) is equal to	120 100 0000
				25499:(2, 1),
				25500:(3, 0),
18	8	13876	DU_J19_MC A_Q18 If $\int \sin^2 x \cos 3x dx = \frac{\sin x}{a} + \frac{\sin x}{a}$	$\frac{\sin 3x}{b} - \frac{\sin 5x}{c}$, then $a + b + c$ is e
				25502:22,

					25503:26,
					25504:30,
	19	13890	DU_J19_MC A_Q19		25557: 2/3,
				$\lim_{x \to 0} \frac{\left(e^x - 1 - x\right)^2 \cos x}{x(\sin x - x)} $ is equal to	25558: -3/2,
			(1)		25559: 3/2,
					25560:-3,
	20	13878	DU_J19_MC A_Q20	If Taylor's theorem applied on the function $f(x) = \int_{0}^{x} \frac{\sin t}{t} dt$ then the value of the derivative $f^{(2)}(0)$ is equal to	25509:1/21 ,
					25510:-1/12 ,
					25511:1/(21)21! ,
١			ı		1

				25512:-1/21! ,	
21	13879	DU_J19_MC A_Q21	The area (in square units) of the quadrilateral formed by the tangent lines drawn to the	25513:,	125
			ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at the ends of its two latus rectums is	25514:,	125
			S.C.O.	25515:,	75
				25516:,	75
22	13880	DU_J19_MC A_Q22		25517:1,	
			Let $V=M_{\underline{I}}(R)$ denotes the vector space of $2 < 2$ matrices with real entries over the real field. Let $T:V \to V$ be defined by $T(P) = P'$ for any $P \in V$, where P' is the transpose of P . If E is the matrix representation of T with respect to the standard basis of V then $det(E)$ is equal to	25518:2,	
				25519:-2,	
				25520:-1,	

	_				
23	13881	DU_J19_MC		25521:,	***
		A_Q23		1	an ellipse with
	1		The equation $2x^2 + y^2 - 12x - 4y + 16 = 0$ represents	ı	
		1		ı	
	1	1			
		1		25522:, a 1	yperbola with
		1	, 🔾	ı	
		1		ı	
		1		ı	
		1	(V)	25522	
		1		25523:,	an ellipse wi
	1	1		ı	
	1	1		ı	
	1	1		ı	
	1	1	41/2	25524:,	a hyperbola wi
	1	1		25524:,	a nyperoola wi
	1	1		ı	
	1	l .	Car	ı	
		- 4		ı	
24	13882	DU J19 MC		25525:19,	
		A_Q24	~	23323.19,	
			WW. 1.11	ı	
		1	. If $f(x)=ax^2+bx^2+x+1$ has a local maxima value 3 at the point of local maxima $x=-2$,	ı	
		1	then $f(2)$ is equal to	ı	
		1		25526:20,	
	1	1		23320.20,	
	1	1		ı	
	1	1		ı	
	1	1		ı	
		1		25527:24,	
	1	1		,	
	1	1		ı	
	1	1		ı	
		1		ı	
	1	1		25528:25,	
	1	1			
		1		1	
		1		1	
25	42000	BUL 140 110			
25	13883	DU_J19_MC		25529:,	105
		A_Q25	If the Newton-Raphson method is applied to find a real root of $f(x) = 2x^2 + x - 2 = 0$	I	103
		1	with initial approximation $x_0 = 1$. Then the second approximation x_2 is	I	
		1	The same of the sa	1	
1	1	1	I	1	

					25530:,	82
					25531:,	84 105
				To,	25532:,	$\frac{24}{105}$
	26	13884	DU_J19_MC A_Q26	The equation of common tangent to the curve $y^2 = 8x$ and $xy = -1$ is	25533:3y = 9x+	2,
					25534:y = 2x +	1,
					25535:2y = x +	8,
					25536:y = x+2 ,	,
ł	27	13885	DU_J19_MC A_Q27	The gratest value of the function $y = Sin(x)$. $Sin(2x)$ on $(-\infty, \infty)$ is	25537:,	$\frac{4}{3\sqrt{3}}$
					25538:,	$\frac{3}{3\sqrt{3}}$
					l	-

				25539:,	$\frac{2}{3\sqrt{3}}$
			CO.	25540:,	
28	13886	DU_J19_MC A_Q28	let $f(x) = Sin^2(x) + Cos^2(x)$. The function f increases in the interval	25541:,	(π/4, τ
			T.C.	25542:,	(5π/
				25543:,	$(\pi/2)$
				25544:,	(0,
29	13887	DU_J19_MC A_Q29	The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ above x-axis is equal to	25545: 5/3,	
				25546:1//3,	
				25547: 2/3,	
			1	<u> </u>	_

				25548: 4/3 ,
30	13888	DU_J19_MC A_Q30	The perimeter of the loop of the curve $9y^2 = (x - 2)(x - 5)^2$ is:	4 √3:,
			To,	2√3):,
			11/01/	4 551:,
				3 √3 !:,
31	13892	DU_J19_MC A_Q31	Read the following passage and answer the subsequent questions: I'd been working with plastic bags, which I cut up and sew back together as my primary material for my artwork for the last 20 years. I turn them into two and three-dimensional pieces and sculptures and installations. After about the first eight years, some of my work started to fissure and break down into smaller	25565: Plastic had been material for his artwork years,
			little bits of plastic. It's a bad thing that plastic breaks down into smaller little bits, because it's always still plastic. And a lot of it is in the marine environment. I learned about the Pacific garbage patch. I wanted to go out there, pick up the plastic, and cold mold it into bricks to be used as building materials in underdeveloped communities. But soon I realized that I needed to look at the bigger picture first: we need to attack the source of this waste that is entering the	25566: His work started break down into smaller plastic,

			marine environment every day on a global scale. Rather than the marine plastic pile what I should focus on, is the pile of plastic in the supermarket. I'd go to the supermarket and all of my food is packaged in plastic. I'm concerned about the plastic and the toxins that leach from plastic into us and into our bodies. How did the writer come to be concerned about plastic waste?	25567: He realized that it plastic his work broke in polluted the marine env 25568: Plastic breaks do little bits, but it turns int
32	13893	A_Q32	Read the following passage and answer the subsequent questions: I'd been working with plastic bags, which I cut up and sew back together as my primary material for my artwork for the last 20 years. I turn them into two and three-dimensional pieces and sculptures and installations. After about the first eight years, some of my work started to fissure and break down into smaller little bits of plastic. It's a bad thing that plastic breaks down into smaller little bits, because it's always still plastic. And a lot of it is in the marine environment. I learned about the Pacific garbage patch. I wanted to go	25569: Plastic waste tha the marine environment 25570: The massive use packaging for consumer
			out there, pick up the plastic, and cold mold it into bricks to be used as building materials in underdeveloped communities. But soon I realized that I needed to look at the bigger picture first: we need to attack the source of this waste that is entering the marine environment every day on a global scale. Rather than the marine plastic pile what I should focus on, is the pile of plastic in the supermarket. I'd go to the supermarket and all of my food is packaged in plastic. I'm concerned about the plastic and the toxins that leach from plastic into us and into our bodies. What does he mean by "the bigger picture"?	25571:Toxins leaching finto us and into our bod 25572:Plastic waste cold bricks to be used as buil

33	13894	DU_J19_MC A_Q33	Read the following passage and answer the subsequent questions: I'd been working with plastic bags, which I cut up and sew back together as my primary material for my artwork for the last 20 years. I turn them into two and three-dimensional pieces and sculptures and installations. After about the first eight years, some of my work started to fissure and break down into smaller little bits of plastic. It's a bad thing that plastic breaks down into smaller little bits, because it's always still plastic. And a lot of it is in the marine environment. I learned about the Pacific garbage patch. I wanted to go out there, pick up the plastic, and cold mold it into bricks to be used as building materials in underdeveloped communities. But soon I realized that I needed to look at the bigger picture first: we need to attack the source of this waste that is entering the marine environment every day on a global scale. Rather than the marine plastic pile what I should focus on, is the pile of plastic in the supermarket. I'd go to the supermarket and all of my food is packaged in plastic. I'm concerned about the plastic and the toxins that leach from plastic into us and into our bodies. Why does author want to go to the Pacific?	25573:To pick up the pl mold it into bricks. , 25574:To see the plastic there, 25575:To throw more p 25576:For sight seeing,
34	13895	DU_J19_MC A_Q34	Read the following passage and answer the subsequent questions: I'd been working with plastic bags, which I cut up and sew back together as my primary material for my artwork for the last 20 years. I turn them into two and three-dimensional pieces and sculptures and installations. After about the first eight years, some of my work started to fissure and break down into smaller little hits of plastic. It's a had thing that plastic breaks	25577:All the items are paper.,

			down into smaller little bits, because it's always still plastic. And a lot of it is in the marine environment. I learned about the Pacific garbage patch. I wanted to go out there, pick up the plastic, and cold mold it into bricks to be used as building materials in underdeveloped communities. But soon I realized that I needed to look at the bigger picture first: we need to attack the source of this waste that is entering the marine environment every day on a global scale. Rather than the marine plastic pile what I should focus on, is the pile of plastic in the supermarket. I'd go to the supermarket and all of my food is packaged in plastic. I'm concerned about the plastic and the toxins that leach from plastic into us and into our bodies. What does the author find in supermarket?	25579: All of his food is plastic, 25580: Plastic does not oproblem,
35	1	DU_J19_MC A_Q35	Read the following passage and answer the subsequent questions: Recycling – everybody kind of ends their books about being sustainable and greening with the idea of recycling. You put something in a bin and you don't have to think about it again. What is the reality of that? In the United States, less than seven percent of the plastics are recycled, or incinerated, or shipped to China. It is down-cycled and turned into lesser things —	25585:We simply throw waste into trash bin., 25586:We only write ab to recycle,
			a plastic bottle can never be a plastic bottle again. We, a group of people concerned about plastic pollution, have added a fourth R onto the front of the "Reduce, Reuse, Recycle," and that is refuse. Whenever possible, refuse single-use and disposable plastics. Alternatives exist: I myself am now collecting these cool Pyrex	25587:Not much of plas really recycled,

			containers and using those instead of plastic containers to store food in. And I know that I am doing a service to myself and my family. It is a problem that we've created as consumers and we have to solve it -We can solve this by raising awareness of the issue and teaching people to choose alternatives. Why does the author think recycling is not the right solution?	25588: Plastic waste is o cycled which again turns course of time ,
36	13898	A_Q36	Read the following passage and answer the subsequent questions: Recycling – everybody kind of ends their books about being sustainable and greening with the idea of recycling. You put something in a bin and you don't have to think about it again. What is the reality of that? In the United States, less than seven percent of the plastics are recycled, or incinerated, or shipped to China. It is down-cycled and turned into lesser things — a plastic bottle can never be a plastic bottle again. We, a group of people concerned about plastic pollution, have added a fourth R onto the front of the "Reduce, Reuse, Recycle," and that is refuse. Whenever possible, refuse single-use and disposable plastics. Alternatives exist; I myself am now collecting these cool Pyrex containers and using those instead of plastic containers to store food in. And I know that I am doing a service to myself and my family. It is a problem that we've created as consumers and we have to solve it –We can solve this by raising awareness of the issue and teaching people to choose alternatives. Mark the statement that is NOT true:	25589:In USA seven pe waste is recycled, 25590:Down-cycling onl used plastic into anothe plastic product, 25591:The writer sugge refuse to use, as far as use and disposable plast 25592:People should pra alternatives wherever products
37	13899	A_Q37	Read the following passage and answer the subsequent questions: Recycling – everybody kind of ends their books about being sustainable and greening with the idea of recycling. You put something in a bin and you don't have to think about it again. What is the reality of	25593:Refuse single-use disposable plastics.,

			that? In the United States, less than seven percent of the plastics are recycled, or incinerated, or shipped to China. It is down-cycled and turned into lesser things a plastic bottle can never be a plastic bottle again. We, a group of people concerned about plastic pollution, have added a fourth R onto the front of the "Reduce, Reuse, Recycle," and that is refuse. Whenever possible, refuse single-use and disposable plastics. Alternatives exist; I myself am now collecting these cool Pyrex containers and using those instead of plastic containers to store food in. And I know that I am doing a service to myself and my family. It is a problem that we've created as consumers and we have to solve it -We can solve this by raising awareness of the issue and teaching people to choose alternatives. What service is writer doing to his family?	25594:Using Pyrex cont food., 25595:Using only those which are packaged in F 25596:None of these,
38	13901	DU_J19_MC A_Q38	Read the following passage and answer the subsequent questions: Milk contains a type of sugar called lactose. When we are babies, our bodies make a special enzyme called lactase that allows us to digest the lactose in our mother's milk. But after we are weaned in early childhood, for many people this stops. Without lactase, we cannot properly digest the lactose in milk. But then evolution kicked in: some people began to keep their lactase enzymes active into adulthood. This "lactase persistence" allowed them to drink milk without side effects. It is the result of mutations in a section of DNA that controls the activity of the lactase gene. But in many populations, such as those in Africa, in Asia and South America, the trait is uncommon. Even people who are lactase-non-persistent exploit the option of processing milk into butter, yoghurt, cream or cheese – all of which have reduced amount of lactose. There is clearly a pattern behind which populations evolved high	25601:All babies can dr milk but some grownup any milk, 25602:An enzyme called us to digest mother's m infancy, but in case of s their bodies ston product 25603:Some grownups milk as a result of muta section of their DNA that activity of the lactase ge

			levels of lactase persistence and which didn't, says a genetics professor Dallas Swallow of University College London. Those with the trait are pastoralists: people who raise livestock. Hunter-gatherers, who do not keep animals, did not acquire the mutations. Neither did "forest gardeners" who cultivated plants. But milk consumption is going down, says a study. Statistics tell a different story. While milk consumption has fallen in the US, in Asia demand is growing, where most people are non-lactase-persistent. Whatever advantages the people there see in milk, they outweigh the potential digestive issues or the need to process the milk. Why is it that some grownups can drink and digest milk while others cannot digest it?	25604:The presence of called lactose in milk hir of milk in some people,
39	13902	DU_J19_MC A_Q39	Read the following passage and answer the subsequent questions: Milk contains a type of sugar called lactose. When we are babies, our bodies make a special enzyme called lactase that allows us to digest the lactose in our mother's milk. But after we are weaned in early childhood, for many people this stops. Without lactase, we cannot properly digest the lactose in milk. But then evolution kicked in: some people began to keep their lactase enzymes active into adulthood. This "lactase persistence" allowed them to drink milk without side effects. It is the result of mutations in a section of DNA that controls the activity of the lactase gene. But in many populations, such as those in Africa, in Asia and South America, the trait is uncommon. Even people who are lactase-non-persistent exploit the option of processing milk into butter, yoghurt, cream or cheese – all of which have reduced amount of lactose. There is clearly a pattern behind which populations evolved high levels of lactase persistence and which didn't, says a genetics professor Dallas Swallow of University College London. Those with the trait are pastoralists: people	25605: Evolution worked ways with people in difference of the evolution of the evolution of the evolution of the enzyme. 25607: People whose liver around livestock came to the evolution of the

			who raise livestock. Hunter-gatherers, who do not keep animals, did not acquire the mutations. Neither did "forest gardeners" who cultivated plants. But milk consumption is going down, says a study. Statistics tell a different story. While milk consumption has fallen in the US, in Asia demand is growing, where most people are non-lactase-persistent. Whatever advantages the people there see in milk, they outweigh the potential digestive issues or the need to process the milk. How did some populations come to retain lactase-persistence while very many others did not as they grew up?	25608:It is a genetic ch many populations, such Africa, in Asia and South trait is uncommon,
40	13903	DU_J19_MC A_Q40	Read the following passage and answer the subsequent questions: Milk contains a type of sugar called lactose. When we are babies, our bodies make a special enzyme called lactase that allows us to digest the lactose in our mother's milk. But after we are weaned in early childhood, for many people this stops. Without lactase, we cannot properly digest the lactose in milk. But then evolution kicked in: some people began to keep their lactase enzymes active into adulthood. This "lactase persistence" allowed them to drink milk without side effects. It is the result of mutations in a section of DNA that controls the activity of the lactase gene. But in many populations, such as those in Africa, in Asia and South America, the trait is uncommon. Even people who	25609:The enzyme laction digest milk in our infance 25610:People who are repersistent can use milk cheese as they are lactors.
			are lactase-non-persistent exploit the option of processing milk into butter, yoghurt, cream or cheese – all of which have reduced amount of lactose. There is clearly a pattern behind which populations evolved high levels of lactase persistence and which didn't, says a genetics professor Dallas Swallow of University College London. Those with the trait are pastoralists: people who raise livestock. Hunter-gatherers, who do not keep animals, did not acquire the mutations. Neither did "forest gardeners" who cultivated plants. But milk	25611:Lactase-deficient because of its health be everywhere drink milk ,

				consumption is going down, says a study. Statistics tell a different story. While milk consumption has fallen in the US, in Asia demand is growing, where most people are non-lactase-persistent. Whatever advantages the people there see in milk, they outweigh the potential digestive issues or the need to process the milk. Mark the statement that is NOT true:	25612:It is interesting t milk consumption is goir lactase persistent populi
4	41	13905	DU_J19_MC A_Q41	Which of the following operands have equal precedence, in C programming language?	25617:I and II,
				I [] II & III ← IV ()	25618:II and III ,
					25619:I and IV ,
					25620:II and IV ,
4	42	13906		The operator a << b shifts binary representation of integer 'a' by 'b' bit, in C programming language.	25621:Circularly left ,
					25622:Circularly right ,

				25623:Left ,
				25624:Right ,
43	13907	DU_J19_MC A_Q43	Two's complement of 00000000 is	25625:11111111 ,
			C.Y. O.	25626:00000000 ,
				25627:10101010 ,
				25628:01010101 ,
44	13908	DU_J19_MC	Study the following C code	25629:Only I is true,
		A_Q44	main() { int i = 4; int j = 10; Statements of the program if $(j > 0)$ { int i = 44; Statements	25630:Only II is true,

			I The local value of I is 44. II The global value of I is 4 .	25631:Both I and II are
			Silke.	25632:Both I and II are
45	13909	A_Q45 in nine da	twice as fast as Y . Y alone can finish the work ays . X and Y together can finish the work in ays.	25633:6 , 25634:5 ,
				25635:4 ,
				25636:3 ,
46	13910	DU_J19_MC A_Q46 \sqrt{12}	96+ x ² = 60 % of 70. The value of x is .	25637:5,

				25638:6,
			CO.	25639:7,
			TO.	25640:8,
47	13911	DU_J19_MC A_Q47	Average of ten numbers in a list is 25.If one of the numbers in the list is exchanged with another number the average of the new list increases by 5. What is the new number included in the list, if the original number	25641:50,
		(1)	was 15?	25642:60,
				25643:65,
				25644:70,
48	13912	DU_J19_MC A_Q48	How much of acid is in the 10 liter of a 60% solution, of acid and water solution?	25645:18 ,
				25646:12 ,
				<u> </u>

				25647:10 ,
			S. CO.	25648:6 ,
49	13913	DU_J19_MC A_Q49	What is the next term in the series? 2, 7, 14, 23, 34,	25649:45,
			CHI OIL	25650:47,
		6/3		25651:51,
				25652:53,
50	13914	DU_J19_MC A_Q50	The code of DOG is ITL , what is the code of ITL?	25653:NYQ ,
				25654:MXP,
				25655:DOG,

www.FirstRanker.com

25656:JUM,

WWW.FirstRanker.com