www.FirstRanker.com

DU MPhil PhD in Bio Physics N

Sr.No	Questi on Id	Question Descriptio n	Question Body	Options
1	1	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q01 } \end{array}$	Which of the following is an organelle enclosed by a single membrane:	1:Lysosomes, 2: ribosomes, 3: mitochondri 4:choloroplast
2	2	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { _New6july_ } \\ \text { Q02 } \end{array}$	Chlorophyll consists of two parts, a metal ion of Magnesium and an organic portion termed as:	5: dextran, 6: globin, 7:porphyrin, 8:sphingolipid,
3	3	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q03 } \end{array}$	Intellectual Property rights granted over creations like music, novels, paintings and cinematic work is classified as:	10: Copyright, 11: Trademark 12: Certificatio 9:Creative pat
4	4	DU_J19_MP HIL_BIOPHY _New6july_ Q04	"Dextrose" is an example of which type of macromolecule:	13: protein, 14: carbohydr 15: lipid, 16: vitamin,
5	5	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q05 } \end{array}$	The secondary structure of proteins is stabilized mainly via :	17:hydrogen b main chain ato acids . 18: hydrogen side chains of 19: hydrogen main chain anc aminoacids . 20:ionic bonds atoms of amin
6	6	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { _New6july_ } \\ \text { Q06 } \end{array}$	The genetic code is known to be degenerate with several three letter codons coding for the same aminoacid. How many codons code for the Methionine amino acid :	$\begin{aligned} & 21: 3, \\ & 22: 1, \\ & 23: 2, \\ & 24: 0, \end{aligned}$

www.FirstRanker.com

7	7	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q07 } \end{aligned}$	Which of the following is a method for determining the three dimensional structure of proteins.	25:Isothermal Calorimetry, 26: X-ray crys 27: Dynamic li 28: Optical mic
8	8	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july__ } \\ \text { Q08 } \end{array}$	In a NATIVE-PAGE experiment, the proteins are separated:	29:only on bas 30: only on ba 31: only on the quaternary str 32: both the ba size,
9	9	DU_J19_MP HIL_BIOPHY _New6july_ Q09	A mRNA of about 1.5 kb is expected to code for a protein of the following length:	33:~ 500 amir 34: ~ 200 ami 35: ~1000 am 36: ~ 1500 am
10	10	DU_J19_MP HIL_BIOPHY _New6july_ Q10	Which of the following model organisms is used routinely in biological sciences is actually a Frog:	37: Caenorhab 38: Xenopus t 39: Saccharom 40: Danio Reric
11	11	DU_J19_MP HIL_BIOPHY _New6july_ Q11	The bacterial genome typically codes for about ____ genes.	$41: 4,000$, $42: 1,500$, $43: 15,000$, $44: 40,000$,
12	12	DU_J19_MP HIL_BIOPHY _New6july_ Q12	Which of the followings DOES NOT have a membrane-enclosed nucleus in the cell:	45:Archaea, 46: Fungi, 47: Yeast, 48: Protist,
13	13	DU_J19_MP HIL_BIOPHY _New6july_ Q13	You need a protein sample with concentration of $50 \mathrm{mg} / \mathrm{ml}$ for your experiment. You have $1000 \mu \mathrm{~L}$ of this sample with protein concentration of $5 \mathrm{mg} / \mathrm{mL}$. Which of the following would lead you to the desired concentration?	49: Concentrat UL, 50: Concentra uL, 51: Concentra 0.05 L, 52:Concentrat L.

www.FirstRanker.com

14	14	DU_J19_MP HIL_BIOPHY _New6july_ Q14	You have a 5 M solution of NaCl , which needs to be diluted to 1 M concentration. How much water do we add to 100 ml of such solution to make it correct molarity?	$\begin{aligned} & \text { 53:0.5 L, } \\ & \text { 54: } 0.4 \mathrm{~L}, \\ & 55: 300 \mathrm{~mL}, \\ & 56: 500 \mathrm{~mL}, \end{aligned}$
15	15	DU_J19_MP HIL_BIOPHY -New6july_ Q15	Proteins are known to undergo various modifications after their synthesis, known as post-translational modifications. How many such variations are currently known:	$\begin{aligned} & \text { 57: ~20, } \\ & 58: \sim 200, \\ & 59: \sim 2000, \\ & \text { 60: } \sim 5, \end{aligned}$
16	16	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q16 } \end{array}$	Some proteins are known to carry out multiple functions in an organism. Such proteins are known as:	61: Universal 62: Sunny pro 63: Moonlighti 64: Twinkling
17	17	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q17 } \end{aligned}$	In the acronym "siRNA", the letter "si" stands for:	65: small inge 66: small inter 67: short inhib 68: short mRN
18	18	DU_J19_MP HIL_BIOPHY _New6july_ Q18	In protein structure visualization programs, the nitrogen atoms are usually depicted in this color:	69: Grey, 70: Yellow, 71: Red, 72: Blue,
19	19	DU_J19_MP HIL_BIOPHY -New6july_ Q19	In prokaryotes, the genes for related function are often present in genetic units that are regulated together. This arrangement is called as:	$\begin{aligned} & \text { 73: a linkage } \\ & 74: \text { an Operon } \\ & 75: \text { a cistron, } \\ & 76: \text { a CDS, } \end{aligned}$
20	20	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q20 } \end{aligned}$	Which of the following techniques can be used to find the secondary structure content of a protein molecule without any information of the three-dimensional structure information?	77:NMR (Nucle Resonance), 78: Circular di spectroscopy, 79: Size exclu 80:X-ray cryst
21	21	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q21 } \end{array}$	Which of the following statements is CORRECT for double-stranded nucleic acids i. Two strands are associated by hydrogen bonds ii. Sequences are complementary and antiparallel iii. The back-bones are made of phosphor-diester bonds iv. Numbers of hydrogen bonds between two nucleotides are not uniform	81: All of the a 82: All of the 83: All of the

www.FirstRanker.com

				84:Only (i) and
22	22	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q22 } \end{aligned}$	A double-stranded RNA genome isolated from a virus in the stool of a child with gastroenteritis was found to contain 15% uracil. What is the percentage of guanine in the viral genome?	$\begin{aligned} & 85: 15, \\ & 86: 25, \\ & 87: 35, \\ & 88: 75, \end{aligned}$
23	23	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q23 } \end{array}$	A gene encodes a protein with 150 amino acids. There is one intron of 1000 bps , a 5^{\prime}-untranslated region of 100 bps and a 3^{\prime}-untranslated region of 200bps. In the final processed mRNA, how many bases lie between the start and final termination codon?	$\begin{aligned} & \hline 89: 1750, \\ & 90: 750, \\ & 91: 650, \\ & 92: 450, \\ & \hline \end{aligned}$
24	24	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q24 } \end{aligned}$	Western blot is used to probe	$\begin{aligned} & \text { 93: DNA, } \\ & \text { 94: RNA, } \\ & \text { 95: Protein, } \\ & \text { 96:Single strar } \end{aligned}$
25	25	DU_J19_MP HIL_BIOPHY _New6july_ Q25	Some cells in the adult animals do not divide (e.g., heart cells). These cells enter an inactive stage of the cell cycle called as	100:G2 phase, 97: GO phase, 98: G1 phase, 99: S phase,
26	26	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q26 } \end{aligned}$	Which of following is not a protein	101: Spider v 102: Rhino h 103: Cobra v 104: Jute,
27	27	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q27 } \end{aligned}$	In which of the following cases, drug resistance is known to occur	105: Mycoba 106: HIV, 107: Cancer, 108: All of th
28	28	DU_J19_MP HIL_BIOPHY _New6july_ Q28	What does pH 0 indicate?	109: 1 molar $110: 1$ molar $111:$ A very 112: A buffer acid is aced,
29	29	$\left\lvert\, \begin{aligned} & \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \end{aligned}\right.$	What is the advantage of glycolysis, since it taps only a small fraction of the energy available in the glucose molecule?	113:It may be is unavailable.

		\|-INew6July_		114: It is cycl substrate is re 115: It require ATP., 116 :It is comp spontaneous
30	30	DU_J19_MP HIL_BIOPHY QNew6july_ Q30	Which of the following statements are correctly describing the transport system found in plants? i) Xylem: water and nutrients from root to shoots:: Phloem: food synthesized in leaves to other parts ii) Xylem: upward movement only :: Phloem: Both up and down movement iii) Xylem: outside of vascular bundle :: Phloem: centre of vascular bundle iv) Xylem: centre of vascular bundle : : Phloem: outside of vascular bundle	117:Statemen 118: Statemer 119: Statemer 120:Statemen
31	31	DU_J19_MP HIL_BIOPHY _New6july_ Q31	The attachment site for RNA polymerase on the DNA template is called as	121: Cistron, 122: Regulato 123: Promoter 124:Intron,
32	32	DU_J19_MP HIL_BIOPHY _New6july_ Q32	High level of one hormone/protein results in diminution of a second hormone/protein. This phenomena is called as	125: Negative 126: Hermaph 127: Positive 128: Covarian
33	33	DU_J19_MP HIL_BIOPHY _New6july_ Q33	The variable region of an antibody is primarily responsible for	129:Specificity antiqen, 130: Three-di of antibody, 131: Transpor distant locatio 132:Disulfide
34	34	DU_J19_MP HIL_BIOPHY _New6july_ Q34	Gram staining is an example of	133: Differenti 134: Acid fast 135: Negative 136: Spore sta
35	35	DU_J19_MP	Kinetic Theory of Gases deals with	137: macros the system.,

		\|_New6July_		138: microsc system., 139: both m properties of 140: neither macroscopic p svstem.
36	36	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q36 } \end{aligned}$	Thermodynamics deals with	141:macrosco system., 142: microsco system., 143: both mic of the system 144:neither m macroscopic p svstem.
37	37		A system of ideal gas has undergone change from one state to another state. While undergoing the change in state, the work done in a reversible process	145: Is equal t an irreversible 146: Is greate done in an irre 147: Is lesser in an irreversi 148: Is either than the work irreversible pr
38	38	DU_J19_MP HIL_BIOPHY _New6july_ Q38	The First Law of Thermodynamics deals with	149:Flow of e direction, 150: Increase system and th 151: Conserva work on or by 152:None,
39	39	$\left\lvert\, \begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { New6july_ } \\ & \end{aligned}\right.$	Van der Waals distance between two molecules in a gas arises due to	153:Strong el interaction be

		צכצן		154: Strong in the nuclei of t 155: Non-neg molecules, , 156: Negligible molecules.,
40	40	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_- } \\ & \text { Q40 } \end{aligned}$	Maxwell Boltzmann distribution of kinetic energy of molecules is based on	157:Random velocities., 158: Equal dis velocities., 159: Linear di velocities., 160:Power law velocities.,
41	41	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { _New6july_- } \\ \text { Q41 } \end{array}$	Resonance occurs when	161:Compone different wave 162: Compon wavelengths, 163: Compone different wave phases., 164:Compone wavelengths a
42	42	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q42 } \end{aligned}$	Oxygen Molecule (O2) is	165:Diamagne 166: Paramag 167: Ferroma 168: None.
43	43	DU_J19_MP HIL_BIOPHY _New6july_ Q43	Purine is	169:An alipha 170: A homoc compoun , 171: A hetero compoun,

www.FirstRanker.com

				172: A heteroc compoun,
44	44	DU_J19_MP HIL_BIOPHY _New6july_ Q44	Optically active organic compounds must have	173:Symmetr 174: Asymme 175: No carbo 176: Double bo
45	45	DU_J19_MP HIL_BIOPHY _New6july_ Q45	The frequencies of the following electromagnetic radiations are of the order	$\begin{aligned} & \text { 177: Visible> u } \\ & \text { 178: } \text { X-ray }>\text { } \\ & \text { 179: Ultraviole } \\ & \text { 180: X ray > vi } \end{aligned}$
46	46	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { New6july_ } \\ \text { Q46 } \end{array}$	The sum of the series $1,2,4,8,16, \ldots .2 n$ is	$181:$ N_{2}, 182: $2 n$, 183: $2 n-1$, 184: None,
47	47	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_ } \\ & \text { Q47 } \end{aligned}$	Three resistors $1 \Omega, 2 \Omega, 3 \Omega$ are combined in series. What is the equivalent resistance of the combinations?	$\begin{aligned} & \hline 185: 10 \Omega, \\ & 186: 6 \Omega, \\ & 187: 5 \Omega, \\ & 188: 25 \Omega, \end{aligned}$
48	48	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_- } \\ & \text { Q48 } \end{aligned}$	The curve $\times 2 / 4+\mathrm{y} 2 / 9$ = 1 has major \& minor axes	189:2 \& 2 res 190: 3 \& 3 res 191: 2 \& 3 res 192:3 \& 2 res
49	49	$\begin{array}{\|l\|} \hline \text { DU_J19_MP } \\ \text { HIL_BIOPHY } \\ \text { _New6july_ } \\ \text { Q49 } \end{array}$	For a chemical reaction the Equilibrium constant is related to the Forward Rate Constant kf and Backward Rate Constant kb as below.	$\begin{aligned} & \text { 193:K }=\mathrm{kf}+\mathrm{k} \\ & \text { 194: } \mathrm{K}=\mathrm{kf}-\mathrm{k} \\ & \text { 195: } \mathrm{K}=\mathrm{kf} / \mathrm{kt} \\ & \text { 196:K }=\mathrm{kf} \times \mathrm{kt} \end{aligned}$
50	50	$\begin{aligned} & \hline \text { DU_J19_MP } \\ & \text { HIL_BIOPHY } \\ & \text { _New6july_- } \\ & \text { Q50 } \end{aligned}$	The total change in entropy for an irreversible process is	$\begin{aligned} & \hline \text { 197:0, } \\ & \text { 198: Positive, } \\ & \text { 199: Negative } \\ & \text { 200: both posit } \end{aligned}$

