

atoms of amin

21:3,

22: 1,

23: 2,

24:0,

			DU MPhil PhD in Bio Physics N	
Sr.No	Questi on Id	Question Description	Question Body	Options
1	1	DU_J19_MP HIL_BIOPHY _New6july_ Q01	Which of the following is an organelle enclosed by a single membrane:	1:Lysosomes 2: ribosomes 3: mitochono 4:choloroplas
2	2		Chlorophyll consists of two parts, a metal ion of Magnesium and an organic portion termed as:	5:dextran, 6: globin, 7:porphyrin, 8:sphingolipi
3	3		Intellectual Property rights granted over creations like music, novels, paintings and cinematic work is classified as:	10: Copyrigh 11: Tradema 12:Certificat 9:Creative p
4	4	DU_J19_MP HIL_BIOPHY _New6july_ Q04	"Dextrose" is an example of which type of macromolecule:	13:protein, 14: carbohy 15: lipid, 16:vitamin,
5	5	DU_J19_MP HIL_BIOPHY _New6july_ Q05	The secondary structure of proteins is stabilized mainly via :	17:hydroger main chain a acids . 18: hydroge side chains o 19: hydroge main chain a aminoacids , 20:ionic bon

Q06

New6july the Methionine amino acid :

DU_J19_MP The genetic code is known to be degenerate with several three letter

HIL_BIOPHY codons coding for the same aminoacid. How many codons code for

7	7	DII 110 MD	Which of the following is a method for determining the three	25:Isothermal
/	1		dimensional structure of proteins.	
		New6july	difference of proteins.	Calorimetry,
		Q07		26: X-ray crys
				27: Dynamic li
-	-	B.I. 84 - 14		28:Optical mic
8	8		In a NATIVE-PAGE experiment, the proteins are separated:	29:only on bas
		HIL_BIOPHY _New6july_		30: only on ba
		Q08	. (6)	31: only on th
				quaternary str
				32:both the ba
				size.
9	9		A mRNA of about 1.5kb is expected to code for a protein of the	33:~ 500 amir
		New6july	following length:	34: ~ 200 ami
		Q09		35: ~1000 am
			. 9	36:~ 1500 am
10	10		Which of the following model organisms is used routinely in biological	37:Caenorhab
			sciences is actually a Frog:	38: Xenopus t
		New6july Q10		39: Saccharon
				40:Danio Rerio
11	11		The bacterial genome typically codes for about genes.	41:4,000,
		HIL_BIOPHY		42: 1,500,
		New6july Q11		43: 15,000,
		,		44:40,000,
12	12		Which of the followings DOES NOT have a membrane-enclosed	45:Archaea,
			nucleus in the cell:	46: Fungi,
		New6july Q12		47: Yeast,
		412		48:Protist,
13	13		You need a protein sample with concentration of 50mg/ml for your	49:Concentrat
			experiment. You have 1000 µL of this sample with protein	μL,
		New6july Q13	concentration of 5 mg/mL. Which of the following would lead you to the desired concentration?	50: Concentra
		QIS	the desired concentration?	μL,
				51: Concentra
				0.05 L,
				52:Concentrat
				L.

14	14	DII 110 MD	You have a 5 M solution of NaCl, which needs to be diluted to 1 M	E2.0 E I
14	14	HIL_BIOPHY	concentration. How much water do we add to 100 ml of such solution to make it correct molarity?	53:0.5 L, 54: 0.4 L,
		Newbjury Q14	to make it correct molarity?	55: 300 mL,
		,	~()	56:500 mL,
15	15		Proteins are known to undergo various modifications after their	57: ~20,
		New6july	synthesis, known as post-translational modifications. How many such variations are currently known:	58: ~200,
		Q15	variations are currently known.	59: ~2000,
				60: ~5,
16	16		Some proteins are known to carry out multiple functions in an organism. Such proteins are known as:	61: Universal p
		New6july	organism. Such proteins are known as:	62: Sunny prof
		Q16		63: Moonlightii
		,	4.0	64: Twinkling p
17	17	DU_J19_MP HIL_BIOPHY	In the acronym "siRNA", the letter "si" stands for:	65: small inges
		New6july		66: small inter
		Q17		67: short inhib
		(1)		68: short mRN
18	18		In protein structure visualization programs, the nitrogen atoms are	69: Grey,
		New6july	usually depicted in this color:	70: Yellow,
		Q18	<u> </u>	71: Red,
	\bot	-		72: Blue,
19	19		In prokaryotes, the genes for related function are often present in	73: a linkage g
		HIL_BIOPHY _New6july_	genetic units that are regulated together. This arrangement is called as:	74: an Operon
		New6july Q19	as:	75: a cistron,
			<u> </u>	76: a CDS,
20	20		Which of the following techniques can be used to find the secondary	77:NMR (Nucle
		HIL_BIOPHY _New6july_	structure content of a protein molecule without any information of the three-dimensional structure information?	Resonance),
		New6july Q20	three-dimensional structure information?	78: Circular di
		Q20	<u> </u>	spectroscopy,
				79: Size exclus
				80:X-ray cryst
21	21	DU_J19_MP	Which of the following statements is CORRECT for double-stranded	81:All of the al
		HIL_BIOPHY	nucleic acids i. Two strands are associated by hydrogen bonds ii.	82: All of the a
		New6july	Sequences are complementary and antiparallel iii. The back-bones are	83: All of the a
		Q21	made of phosphor-diester bonds iv. Numbers of hydrogen bonds between two nucleotides are not uniform	0017 0
	<u> </u>		between two nucleotides are not uniform	<u> </u>

1	1		84.0	ılv (i) anı
22			85:15 86: 25 87: 35	5, 5,
23	DU_J19_MP	A gene encodes a protein with 150 amino acids. There is one intron of		
	New6july	region of 200bps. In the final processed mRNA, how many bases lie	90: 75 91: 65	50, 50,
24	-		92:45	
24	HIL_BIOPHY _New6july_		94: RI	NÁ,
	Q24	4.00		ngle stra
25	HIL_BIOPHY		100:G 97:G0	32 phase, phase,
	Q25			1 phase,
26	DU 119 MP	Which of following is not a protein		
1	HIL_BIOPHY		1	
			103:	
	Q26		104:	Jute,
27	HIL_BIOPHY		105:	,
			106:	
				Cancer,
28	DU 119 MP	What does pH 0 indicate?		All of th 1 molar
	HIL_BIOPHY _New6july_		110:	1 molar
	Q20			A very s
			I	A buffer
29		What is the advantage of glycolysis, since it taps only a small fraction		t may be
	23 24 25	HIL_BIOPHYNew6july Q22 23	HIL_BIOPHY _New6july_ Q22 DU_J19_MP HIL_BIOPHY _New6july_ Q23 A gene encodes a protein with 150 amino acids. There is one intron of 1000bps, a 5'-untranslated region of 100bps and a 3'-untranslated region of 100bps and a 3'-untranslated region of 200bps. In the final processed mRNA, how many bases lie between the start and final termination codon? DU_J19_MP HIL_BIOPHY _New6july_ Q24 DU_J19_MP HIL_BIOPHY _New6july_ Q25 DU_J19_MP HIL_BIOPHY _New6july_ Q26 DU_J19_MP HIL_BIOPHY _New6july_ Q26 DU_J19_MP HIL_BIOPHY _New6july_ Q26 DU_J19_MP HIL_BIOPHY _New6july_ Q27 Which of following is not a protein In which of the following cases, drug resistance is known to occur HIL_BIOPHY _New6july_ Q27 What does pH 0 indicate? HIL_BIOPHY _New6july_ New6july_ N	HIL_BIOPHY New6july Percentage of guanine in the viral genome? 86: 2! 87: 3! 88:75 89:17 90: 7!

		New6july Q29		114: It is cyclic substrate is re- 115: It require ATP., 116:It is comp spontaneous re-
30	30	HIL_BIOPHY	Which of the following statements are correctly describing the transport system found in plants? i) Xylem: water and nutrients from root to shoots:: Phloem: food synthesized in leaves to other parts ii) Xylem: upward movement only :: Phloem: Both up and down	117:Statemen
			movement iii) Xylem: outside of vascular bundle :: Phloem: centre of vascular bundle iv) Xylem: centre of vascular bundle : : Phloem: outside of vascular bundle	119: Statemer
			*(0	120:Statement
31	31	DU_J19_MP HIL_BIOPHY _New6july_ Q31		121:Cistron, 122: Regulator 123: Promoter 124:Intron,
32	32		High level of one hormone/protein results in diminution of a second hormone/protein. This phenomena is called as	125:Negative f 126: Hermaph 127: Positive f 128:Covariance
33	33	DU_J19_MP HIL_BIOPHY _New6july_ Q33	The variable region of an antibody is primarily responsible for	129:Specificity antigen, 130: Three-dir of antibody,
				131: Transport distant location 132:Disulfide b
34	34	DU_J19_MP HIL_BIOPHY _New6july_ Q34	Gram staining is an example of	133:Differentia 134: Acid fast 135: Negative 136:Spore stai
35	35	DU_J19_MP HIL_BIOPHY	Kinetic Theory of Gases deals with	137: macroso the system.,

		New6july Q35		138: microsco system., 139: both mic properties of tl 140: neither r macroscopic prosystem.
36	36	DU_J19_MP HIL_BIOPHY _New6july_ Q36	Thermodynamics deals with	141:macroscop system., 142: microscop system., 143: both micr of the system., 144:neither mi macroscopic pr system.
37	37	HIL_BIOPHY		145:Is equal to an irreversible 146: Is greated done in an irre 147: Is lesser to in an irreversible 148:Is either gothan the work irreversible pro-
38	38	DU_J19_MP HIL_BIOPHY _New6july_ Q38	The First Law of Thermodynamics deals with	149:Flow of endirection, 150: Increase system and the 151:Conservat work on or by 152:None,
39	39	DU_J19_MP HIL_BIOPHY _New6july_	Van der Waals distance between two molecules in a gas arises due to	153:Strong ele interaction bet

		Ų39		154: Strong in the nuclei of th 155: Non-negl
				molecules, , 156:Negligible molecules.,
40	40	HIL_BIOPHY _New6july_ Q40		157:Random d velocities., 158: Equal dist velocities., 159: Linear dis velocities., 160:Power law velocities.,
41	41	DU_J19_MP HIL_BIOPHY _New6july Q41	Resonance occurs when	161:Componer different wavel 162: Compone wavelengths, b 163: Compone different wavel phases., 164:Componer wavelengths a
42	42	DU_J19_MP HIL_BIOPHY _New6july_ Q42	Oxygen Molecule (O2) is	165:Diamagne 166: Paramagr 167: Ferromag 168:None.,
43	43	DU_J19_MP HIL_BIOPHY _New6july_ Q43		169:An aliphat 170: A homocy compoun , 171: A heteroc compoun,

				172:A heteroo
	\bot			compoun,
44	44		Optically active organic compounds must have	173:Symmetri
		HIL_BIOPHY _New6july_	~() '	174: Asymmet
		Q44		
				175: No carbo
				176:Double bo
45	45		The frequencies of the following electromagnetic radiations are of the	177:Visible> u
		HIL_BIOPHY	order	178: X-ray > i
		New6july		,
		Q45		179: Ultraviole
		1		180:X ray > v
46	46		The sum of the series 1,2,4,8,16,2n is	181: N ₂ ,
		HIL_BIOPHY		182: 2n,
		New6july Q46		183: 2n-1,
		,	·	184: None,
47	47		Three resistors 1Ω , 2Ω , 3Ω are combined in series. What is the	185: 10 Ω,
			equivalent resistance of the combinations?	186: 6 Ω,
		New6july Q47		187: 5 Ω,
		·		188:25 Ω,
48	48		The curve x2/4 +y2/9 =1 has major & minor axes	189:2 & 2 resp
		HIL_BIOPHY		190: 3 & 3 res
		New6july Q48		191: 2 & 3 res
		Q*10		192:3 & 2 resp
49	49		For a chemical reaction the Equilibrium constant is related to the	193:K= kf + k
			Forward Rate Constant kf and Backward Rate Constant kb as below.	194: K= kf - k
		New6july		195:K= kf / kl
		Q49		196:K= kf x k
50	50	DU_J19_MP	The total change in entropy for an irreversible process is	197:0, ,
		HIL_BIOPHY		198: Positive,
		New6july		199: Negative
		Q50		200:both posi