

www.FirstRanker.com

www.FirstRanker.com

Topic:- DU_J19_PHD_BIOCHEM 1) Which of the following statement about protein structures and functions is likely to be False? [Question ID = 15193] 1. Two proteins that share a significant degree of sequence similarity either with each other or with a third sequence also share an evolutionary origin and should share some structural features also [Option ID = 30770] 2. Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30771] 3. Ancient gene for a given protein structure may diverge in different species while maintaining the same basic structural features [Option ID = 30772] Correct Answer :- • Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30759] 2) Which of the following amino acid is not involved in the composition of glutathione? [Question ID = 15189] 1. Glytamate [Option ID = 30755] 2. Gultamine [Option ID = 30753] 3. Glutamate [Option ID = 30753] 4. Oxstelle [Option ID = 30753] 3. Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30829] 3. Which of the following techniques is the most suitable for detecting a metabolite labelled with ¹³ C? <th>DU PhD in Biochemistry</th>	DU PhD in Biochemistry
 Which of the following statement about protein structures and functions is likely to be False? [Question ID = 15193] Two proteins that share a significant degree of sequence similarity either with each other or with a third sequence also share an evolutionary origin and should share some structural features also [Option ID = 30770] Ancient gene for a given protein structure may diverge in different species while maintaining the same basic structural features [Option ID = 30771] Ancient gene for a given protein sequences from different evolutionary origins may fold into a similar structure functions [Option ID = 30772] Correct Answer :- Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30772] Outries that are members of the same family are likely to have same three-dimensional structures but different functions [Option ID = 30772] Outries (Option ID = 30756] Glutamine (Option ID = 30755] Glutamine (Option ID = 30753] Outries (Option ID = 30753] Cell swells and ultimately bursts [Option ID = 30830] Correct Answer :- Option ID = 30830] Correct Answer :- Option ID = 30829] Othich of the following techniques is the most suitable for detecting a metabolite labelled withf¹³C? Question collapses [Option ID = 30829] Which of the following techniques is the most suitable for a metabolite labelled withf¹³C? Question collapses [Option ID = 30716] Mass spectrometry [Option ID = 30716]<	Topic:- DU_J19_PHD_BIOCHEM
<pre>[Question ID = 15193] 1. Two proteins that share a significant degree of sequence similarity either with each other or with a third sequence also share an evulutonary origin and should share some structural features also [Option ID = 30770] 2. Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30771] 4. Proteins that are members of the same family are likely to have same three-dimensional structures but different functions [Option ID = 30772] Correct Answer :- * Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30772] 2. Which of the following amino acid is not involved in the composition of glutathione? [Question ID = 15189] 1. Glycine [Option ID = 30755] 2. Glutamine [Option ID = 30753] 4. Cysteline [Option ID = 30753] 3. Uthich of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30830] Correct Answer :- * Cytoskeleton collapses [Option ID = 30829] 4. Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 3071] 4. Westermantly copy [Option ID = 30829] 4. Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 3071] 4. Wass pectrometry [Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3072] 5. Muse mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nuclear mananetic resonance spectroscovy (Option ID = 3071] 5. Nucle</pre>	1) Which of the following statement about protein structures and functions is likely to be False?
 Two proteins that share a significant degree of sequence similarity either with each other or with a third sequence also share an evolutionary origin and should share some structural features also [Option ID = 30770] Two entriely different protein sequences from different evolutionary origins may fold into a similar structure functions [Option ID = 30771] Proteins that are members of the same family are likely to have same three-dimensional structures but different functions [Option ID = 30772] Correct Answer :- Two entriely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30759] Okich of the following amino acid is not involved in the composition of glutathione? Question ID = 30755] Glutamine (Option ID = 30755] Glutamine (Option ID = 30753] Otrect Answer :- Glycine [Option ID = 30753] Orrect Answer :- Glutamine (Option ID = 30753] Givenie [Option ID = 30753] Orrect Answer :- Glutamine (Option ID = 30753] Orrect Answer :- Glutamine (Option ID = 30753] Os of mitochondrial membrane functions [Option ID = 30831] Loss of mitochondrial membrane functions [Option ID = 30832] Cytoskeleton collapses [Option ID = 30829] Othich of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? Question ID = 15179] Mass spectrometry [Option ID = 30713] Mucker manetic resonance spectroscoyre [Ootion ID = 30714]	[Question ID = 15193]
Correct Answer :- • Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30769] 2) Which of the following amino acid is not involved in the composition of glutathione? [Question ID = 15189] 1. Glycine [Option ID = 30755] 2. Glutamine [Option ID = 30753] 3. Glutamate [Option ID = 30753] 4. Cysteine [Option ID = 30753] 3. Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30829] 4. Cytoskeleton collapses [Option ID = 30829] 4. Which of the following techniques is the most suitable for detecting a metabolite labelled with ¹³ C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30713] 3. Wuclear mannetic response copy (Dotion ID = 30714]	 Two proteins that share a significant degree of sequence similarity either with each other or with a third sequence also share an evolutionary origin and should share some structural features also [Option ID = 30770] Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30769] Ancient gene for a given protein structure may diverge in different species while maintaining the same basic structural features [Option ID = 30771] Proteins that are members of the same family are likely to have same three-dimensional structures but different functions [Option ID = 30772]
 2) Which of the following amino acid is not involved in the composition of glutathione? [Question ID = 15189] 1. Glycine [Option ID = 30755] 2. Glutamine [Option ID = 30753] 3. Gutamate [Option ID = 30753] 4. Cysteine [Option ID = 30753] 3) Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30829] 4. DNA breaks [Option ID = 30829] 4. Which of the following techniques is the most suitable for detecting a metabolite labelled with ¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30714] 	 Correct Answer :- Two entirely different protein sequences from different evolutionary origins may fold into a similar structure [Option ID = 30769]
 Correct Answer :- Glutamate [Option ID = 30753] 3) Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] Cell swells and ultimately bursts [Option ID = 30831] Loss of mitochondrial membrane functions [Option ID = 30832] Cytoskeleton collapses [Option ID = 30829] DNA breaks into fragments [Option ID = 30830] Correct Answer :- Cytoskeleton collapses [Option ID = 30829] 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] Mass spectrometry [Option ID = 30716] Infra red spectroscopy [Option ID = 30713] Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	 2) Which of the following amino acid is not involved in the composition of glutathione? [Question ID = 15189] 1. Glycine [Option ID = 30755] 2. Glutamine [Option ID = 30756] 3. Glutamate [Option ID = 30753] 4. Cysteine [Option ID = 30754]
 Glutamate [Option ID = 30753] 3) Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30830] Correct Answer :- Cytoskeleton collapses [Option ID = 30829] 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30713] 3. Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	Correct Answer :-
 3) Which of the following is NOT a change experienced by a typical cell committed for apoptosis? [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30830] Correct Answer :- • Cytoskeleton collapses [Option ID = 30829] 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30713] 3. Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	• Glutamate [Option ID = 30753]
 [Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30830] Correct Answer :- Cytoskeleton collapses [Option ID = 30829] 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30713] 3. Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	3) Which of the following is NOT a change experienced by a typical cell committed for apoptosis?
 Correct Answer :- Cytoskeleton collapses [Option ID = 30829] 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30713] 3. Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	[Question ID = 15208] 1. Cell swells and ultimately bursts [Option ID = 30831] 2. Loss of mitochondrial membrane functions [Option ID = 30832] 3. Cytoskeleton collapses [Option ID = 30829] 4. DNA breaks into fragments [Option ID = 30830]
 4) Which of the following techniques is the most suitable for detecting a metabolite labelled with¹³C? [Question ID = 15179] 1. Mass spectrometry [Option ID = 30716] 2. Infra red spectroscopy [Option ID = 30713] 3. Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	Correct Answer :- • Cytoskeleton collapses [Option ID = 30829]
 Mass spectrometry [Option ID = 30716] Infra red spectroscopy [Option ID = 30713] Nuclear magnetic resonance spectroscopy [Option ID = 30714] 	4) Which of the following techniques is the most suitable for detecting a metabolite labelled with ¹³ C? [Question ID = 15179]
S	 Mass spectrometry [Option ID = 30716] Infra red spectroscopy [Option ID = 30713] Nuclear magnetic resonance spectroscopy [Option ID = 30714]

Infra red spectroscopy [Option ID	www.FirstRanker.com	www.FirstRanker.com
5) Which of the following prope	rties is not associated with non-cova	lent interactions in proteins?
[Question ID = 15192]		
 Involves a chemical bond [Option Important for secondary and tertia Weak interactions [Option ID = 30 Interaction in space [Option ID = 	ID = 30766] ary structural integrity [Option ID = 30768)767] 30765]	3]
Correct Answer :-		
• Interaction in space [Option ID =	30765]	
6) Which one of the following te expressed genes in tumor tissue	echniques will you use to identify mo s in one experiment?	re than 1000 differentially
[Question ID = 15224]		
1. RAPD [Option ID = 30893] 2. ChiP assay [Option ID = 30895] 3. Genome sequencing [Option ID = 4. Microarrays [Option ID = 30896]	30894]	
Correct Answer :- • RAPD [Option ID = 30893]		
7) Which one of the following st	atements is correct?	
7) Which one of the following st [Question ID = 15221]	atements is correct?	
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] 	rminal carbon atom is chiral [Option ID = biological membranes is optically active [bition ID = 30881] Il be the sum of the specific rotations of D	30882] Option ID = 30884] 9-glucose and D-fructose [Option ID =
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] 	rminal carbon atom is chiral [Option ID = biological membranes is optically active [bion ID = 30881] Il be the sum of the specific rotations of D	30882] Option ID = 30884])-glucose and D-fructose [Option ID =
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] Correct Answer :- Deoxyribose is optically active [Op 	rminal carbon atom is chiral [Option ID = biological membranes is optically active [otion ID = 30881] Il be the sum of the specific rotations of D ption ID = 30881]	30882] Option ID = 30884])-glucose and D-fructose [Option ID =
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] Correct Answer :- Deoxyribose is optically active [Op 8) Which is true for size exclusion 	Exatements is correct? rminal carbon atom is chiral [Option ID = biological membranes is optically active [bition ID = 30881] Il be the sum of the specific rotations of D ption ID = 30881] ption ID = 30881]	30882] Option ID = 30884] O-glucose and D-fructose [Option ID =
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] Correct Answer :- Deoxyribose is optically active [Op 8) Which is true for size exclusion [Question ID = 15196] 	<pre>tatements is correct? rminal carbon atom is chiral [Option ID = biological membranes is optically active [bition ID = 30881] Il be the sum of the specific rotations of D ption ID = 30881] ption ID = 30881]</pre>	30882] Option ID = 30884] 9-glucose and D-fructose [Option ID =
 7) Which one of the following st [Question ID = 15221] 1. In all L-amino acids, only the C-ter 2. Phosphatidyl choline isolated from 3. Deoxyribose is optically active [Op 4. The specific rotation of sucrose wi 30883] Correct Answer :- Deoxyribose is optically active [Op 8) Which is true for size exclusion [Question ID = 15196] 1. Sample volume affects the resoluti 2. Width of the column affects the resoluti 2. Width of the column affects the resoluti 4. Length of the column does not affects 	<pre>catements is correct? rminal carbon atom is chiral [Option ID = biological membranes is optically active [bition ID = 30881] II be the sum of the specific rotations of D ption ID = 30881] ption ID = 30881] con chromatography? ion of separation of proteins [Option ID = esolution of separation of proteins [Option ID = 30 ins can be well separated [Option ID = 30 intervention of separation of proteins [Option ID = 30 intervention of separation</pre>	30882] Option ID = 30884] D-glucose and D-fructose [Option ID = 30783] ID = 30782] D784] s [Option ID = 30781]

[Question ID = 15176]

F

12) Is there a difference between oncogenes and tumor suppressor genes?

[Question ID = 15177]

- 1. No, oncogenes and tumor suppressor genes both stimulate the development of cancer, even in the absence of their becoming mutated. [Option ID = 30706]
- 2. Yes, oncogenes are genes that can cause cancer when they become mutated to become proto-oncogenes, whereas tumor suppressor genes play no role in cancer. [Option ID = 30708]
- 3. Yes, oncogenes prevent cancer from forming unless they are mutated to become proto-oncogenes, whereas tumor suppressor genes stimulate the formation of cancer even in the absence of mutation. [Option ID = 30705]
- 4. Yes, oncogenes are mutated versions of genes that promote abnormal cell division (such as ras and myc), whereas tumor suppressor genes normally hold cell division in check when it is not appropriate (such as Rb and p53). [Option ID = 30707]

Correct Answer :-

• Yes, oncogenes prevent cancer from forming unless they are mutated to become proto-oncogenes, whereas tumor suppressor genes stimulate the formation of cancer even in the absence of mutation. [Option ID = 30705]

13) In biosynthesis of cholesterol

Question	TDE-12190]old	- www	.FirstRanker.com	www.FirstRanker.com
1. 3-hydrox 30717]	xy-3 methyl glutaryl	CoA (HMG CoA) is	synthesized by mitochondria	al HMGCoAsynthetase [Option ID =
2. Condens 3. HMG Co	sation of two farnes A reductase catalyz	I pyrophosphates t the rate limiting s	o form squalene is freely restep [Option ID = 30718]	versible [Option ID = 30720]
4. The conv mevalon	version of mevaloni ic acid [Option ID =	c acid to farnesyl py 30719]	rophosphate proceeds via c	condensation of three molecules of
Correct A 3-hydrox 30717]	nswer :- xy-3 methyl glutary	I CoA (HMG CoA) is	s synthesized by mitochond	rial HMGCoAsynthetase [Option ID =
I4) After statement I. Increa II. Increa III. Increa IV. Decre Which one	hemorrhage, a si ts regarding hom sed release of va ased water retent ased rate of affer cased rate of affer e of the following	ubject develops h eostatic measure sopressin ion and reduced p ent discharge fro rent discharge fro is NOT correct in	ypovolemia and hypoten taken by the body after plasma osmolality m low pressure receptor m high pressure recepto this condition?	nsion. Following are some of the hemorrhage. s of vascular system rs of vascular system
Question	ID = 15222]			
L. I and II 2. Only III	[Option ID = 30886])] 7]		
3. Only I [0 4. II and I\	Option ID = 30885] / [Option ID = 3088	38]		
Correct A	nswer :-			
• Only I [(Option ID = 30885			
L5) Durin	ng the process of	exocytosis, SNAR	Es are needed for memb	rane to:
Question	ID = 15199]			
1. Induce S	Signaling [Option ID	= 30795]		
2. Flip Flop 3. Undergo	[Option ID = 3079 lateral diffusion [O	4] ption ID = 30793]		
4. Fuse [Op	ption ID = 30796]	. –		
Correct A	nswer :-			
Undergo) lateral diffusion [()ption ID = 30793]		
L6) In a r Phe-Phe . Dolymer d Could you	reticulocyte lysate In the presence lirects synthesis o make about farse	e the polynucleot of farsomycin, a r of Met-Phe only. F omycin?	ide 5'-AUGUUUUUUUU new antibiotic perfected From this information, w	directs the synthesis of Met-Phe- by Fluhardy Pharmaceuticals, this hich of the following deductions
Question	ID = 15220]			
1. It blocks 2. It prever	translocation of pents formation of the ID = 308771	ptidyl tRNA from th 80S initiation comp	e A-site to the P-site of the olex, which contains the initi	ribosome. [Option ID = 30880] ator tRNA and both ribosomal subunits
3 It inactiv	ates peptidyl transf	erase activity on th	e large ribosomal unit. [Opt	ion ID = 30879]

www.FirstRan	ker.com www.FirstRanker.con
17) In an enzyme-catalyzed reaction, how does V_{max} at doubled while keeping all the reaction conditions uncha	nd K _m change if the enzyme concentration is nged, ensuring that substrate is not limiting?
[Question ID = 15186]	
1. Both V_{max} and K_m are doubled [Option ID = 30744] 2. V_{max} is unchanged, while K_m is doubled [Option ID = 30742] 3. V_{max} is doubled, while K_m is unchanged [Option ID = 30743] 4. V_{max} is doubled, while K_m is halved [Option ID = 30741]]
Correct Answer :- • V _{max} is doubled, while K _m is halved [Option ID = 30741]	
18) Cell types are usually identified by using immuno-h has to be against:	istochemistry technique. In such case, antibo
[Question ID = 15202]	
 Cell surface proteins [Option ID = 30808] Ribosomal proteins [Option ID = 30807] Cytosolic proteins [Option ID = 30806] Mitochondrial proteins [Option ID = 30805] 	
Correct Answer :- • Mitochondrial proteins [Option ID = 30805]	
19) In flies, frogs and chicks, gradients of morphogens and dorso-ventral axes of the developing embryo. How	determine the future antero-posterior (A-P) is the A-P axis determined in C. <i>elegans</i> ?
[Question ID = 15184]	
 Opposing gradients of chordin and BMP-4 establish the A-P a Sperm entry leads to reorganization of the cytoskeleton and which in turn determine the A-P axis. [Option ID = 30734] <i>Bicoid protein</i> is translated in the anterior of the fertilized eg [Option ID = 30733] <i>Beta-catenin</i> becomes localized to the nucleus in the future a 	axis. [Option ID = 30736] redistribution of maternally packaged PAR proteins, g leading to a gradient that determines the A-P axis anterior cells after fertilization. [Option ID = 30735]
Correct Answer :-	
Correct Answer :- • <i>Bicoid protein</i> is translated in the anterior of the fertilized e [Option ID = 30733]	gg leading to a gradient that determines the A-P a
 Correct Answer :- <i>Bicoid protein</i> is translated in the anterior of the fertilized e [Option ID = 30733] 20) Dye injected into an epithelial cell might be able to [Option ID = 20] 	gg leading to a gradient that determines the A-P a enter into an adjacent cell through a :
 Correct Answer :- <i>Bicoid protein</i> is translated in the anterior of the fertilized e [Option ID = 30733] 20) Dye injected into an epithelial celll might be able to [Question ID = 15209] 	egg leading to a gradient that determines the A-P a
 Correct Answer :- Bicoid protein is translated in the anterior of the fertilized e [Option ID = 30733] 20) Dye injected into an epithelial cell might be able to [Question ID = 15209] 1. Desmosomes [Option ID = 30835] 2. Gap junction [Option ID = 30834] 3. Microtubule [Option ID = 30833] 4. Tight junction [Option ID = 30836] 	agg leading to a gradient that determines the A-P a
 Correct Answer :- Bicoid protein is translated in the anterior of the fertilized e [Option ID = 30733] 20) Dye injected into an epithelial cell might be able to [Question ID = 15209] 1. Desmosomes [Option ID = 30835] 2. Gap junction [Option ID = 30834] 3. Microtubule [Option ID = 30833] 4. Tight junction [Option ID = 30836] Correct Answer :- 	agg leading to a gradient that determines the A-P a

FirstRanker.com

Asteriate and the provided as the state of t

[Question ID = 15195]

1. the size of the primers may be decreased [Option ID = 30778]

- 2. the size of the primers may be increased [Option ID = 30779]
- 3. the gene can be cloned into a larger size plasmid [Option ID = 30780]
- 4. the gene can be cloned into a much smaller size plasmid [Option ID = 30777]

Correct Answer :-

• the gene can be cloned into a much smaller size plasmid [Option ID = 30777]

22) A study was conducted to compare the proteome of normal individuals and cancer patients to identify new biomarkers for cancer. The study employed the use of 2D-DIGE by labeling the normal samples with Cy3 and cancer patient samples with Cy5. The Cy2 labeling was also employed in the experiment because:

[Question ID = 15194]

- 1. There is no use of Cy2 labeling. The experiment could have been performed the same way with only two tags. [Option ID = 30776]
- 2. It will help in uniform labeling of the proteins from the cancer patient samples [Option ID = 30774]
- 3. Using three different colours will give rise to better analysis of the spots [Option ID = 30775]
- 4. It can act as an internal standard for normalization of all protein spots [Option ID = 30773]

Correct Answer :-

• It can act as an internal standard for normalization of all protein spots [Option ID = 30773]

23) "Heyflick's limit" refers to which one of the following phenomena?

[Question ID = 15206]

- 1. Cellular senescence *in vitro* [Option ID = 30822]
- 2. RNA transport [Option ID = 30824]
- 3. DNA repair [Option ID = 30821]
- 4. Protein synthesis [Option ID = 30823]

Correct Answer :-

• DNA repair [Option ID = 30821]

24) β-lactoglobulin promoter is used for expression of gene in:

[Question ID = 15198]

1. Liver [Option ID = 30789]

- 2. Mammary gland [Option ID = 30791]
- 3. Spleen [Option ID = 30790]
- 4. Lymph node [Option ID = 30792]

Correct Answer :-

• Liver [Option ID = 30789]

25) If association behaviour is to be evaluated for a aggregation prone protein by analytical ultracentrifugation, which of the following is true?

	www.FirstRanker.com	www.FirstRanker.com
1. Sedimentation coefficient will de	crease with increasing concentration [Option	ID = 30786]
2. Sedimentation coefficient will inc	crease with decreasing concentration [Option	ID = 30788]
3. Sedimentation coefficient will inc	crease with increasing concentration [Option]	ID = 30785]
4. Sedimentation coefficient will ren	main unchanged with increasing concentration	n [Option ID = $30/87$]
Correct Answer :-		
• Sedimentation coefficient will in	crease with increasing concentration [Option	n ID = 30785]
26) A mature human RBC:		
[Ouestion ID = 15205]		
1. Does not divide [Option ID = 303	818] [Option ID = 20820]	
3. Divides once a day [Ontion ID =	: 30817]	
4. Divides every 120 days [Option J	ID = 30819]	
O		
Divides ance a day [Option ID]	- 30817]	
27) Catabolism of which of the	following amino acids requires the dire	ect involvement of O ₂ ?
[Question ID = 15191]		
1 Histidina [Option ID - 20761]		
2. Glutamine [Option ID = 30764]		
3. Isoleucine [Option ID = 30763]		
4. Phenylalanine [Option ID = 3076	52]	
Correct Answer :-		
 Histidine [Option ID = 30761] 		
28) Anti-cancer vitamin is:		
20) Anti-cancer vitamin is.		
[Question ID = 15200]		
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800]		
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 3079] 2. Phylloquinone [Option ID = 3079]	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799]	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 3079 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799]	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 3079 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :-	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797]	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797]	98]	
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797] 29) Contrast the process of inv	98] /olution, epiboly and convergent extens	ion.
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793] 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797] 29) Contrast the process of inv [Ouestion ID = 15181]	98] /olution, epiboly and convergent extens	ion.
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797] 29) Contrast the process of inv [Question ID = 15181]	98] volution, epiboly and convergent extens	ion.
[Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- • Retinol [Option ID = 30797] 29) Contrast the process of inv [Question ID = 15181] 1. Involution is movement of cells to collecto increase the process of a second of a second	98] volution, epiboly and convergent extens coward an axis to extend that axis, epiboly is	ion.
 [Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30797] 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- Retinol [Option ID = 30797] 29) Contrast the process of inverse of the process of inverse of the process of	98] volution, epiboly and convergent extens coward an axis to extend that axis, epiboly is curface they cover and convergent extension is an ID = 307211	ion. flattening and spreading of epithel is the movement of cells inside the
 [Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30793] 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- Retinol [Option ID = 30797] 29) Contrast the process of inverse of inverse of the process of inverse of the process of inverse of the process of the proc	98] volution, epiboly and convergent extens coward an axis to extend that axis, epiboly is curface they cover and convergent extension is on ID = 30721] nside the embryo as a coherent sheet, epibol	ion. flattening and spreading of epithel is the movement of cells inside the ly is a flattening and spreading
 [Question ID = 15200] 1. Pyridoxine [Option ID = 30800] 2. Phylloquinone [Option ID = 30797] 3. Retinol [Option ID = 30797] 4. Thiamine [Option ID = 30799] Correct Answer :- Retinol [Option ID = 30797] 29) Contrast the process of inv [Question ID = 15181] 1. Involution is movement of cells to cells to increase the amount of s embryo as a coherent she [Option 2. Involution is movement of cells in epithelial cells to increase the amount of cells in the process of inverses of the cells to increase the amount of cells in the process of the amount of cells in the process of the amount of cells in the process of the amount of cells in the pithelial cells to increase the pithelial cells to increase the pithelial cells to increase t	98] volution, epiboly and convergent extens coward an axis to extend that axis, epiboly is surface they cover and convergent extension is on ID = 30721] nside the embryo as a coherent sheet, epibol nount of surface they cover and convergent extension	ion. flattening and spreading of epithel is the movement of cells inside the ly is a flattening and spreading extension is movement of cells tow

FirstRanker.com www.FirstRanker.com 4. Involution is flattening of epithelial cells to increase the amount of surface they cover, epiboly is t cells inside the embryo as a coherent sheet and convergent extension is movement of cells toward an axis to extend that axis. [Option ID = 30723] **Correct Answer :-** Involution is movement of cells toward an axis to extend that axis, epiboly is flattening and spreading of epithelial cells to increase the amount of surface they cover and convergent extension is the movement of cells inside the embryo as a coherent she [Option ID = 30721] 30) End labeling of a DNA fragment is a prerequisite for Maxam Gilbert method of DNA sequencing. Which of the following enzymes is used to accomplish this? [Question ID = 15217] 1. Restriction endonucleases [Option ID = 30868] 2. Polynucleotide kinase [Option ID = 30867] 3. DNA ligase [Option ID = 30865] 4. Taq polymerase [Option ID = 30866] **Correct Answer :-**• DNA ligase [Option ID = 30865] 31) Fluorescence microscopy is based on the ability of certain molecules to: [Question ID = 15204] 1. Absorb light of a given wavelength and then emit light of a shorter wavelength [Option ID = 30816] 2. Absorb light of a given wavelength and then emit light of a longer wavelength [Option ID = 30815] 3. Absorb light of many different wavelengths [Option ID = 30814] 4. Continuously emit light of a constant wavelength [Option ID = 30813] **Correct Answer :-**• Continuously emit light of a constant wavelength [Option ID = 30813] 32) A Bronsted acid becomes ______ upon losing a proton [Question ID = 15185] 1. its conjugate acid [Option ID = 30737] 2. its conjugate base [Option ID = 30738] 3. highly reactive [Option ID = 30740] 4. a hydronium ion [Option ID = 30739] **Correct Answer :-** its conjugate acid [Option ID = 30737] 33) In eukaryotic replication, priming of DNA synthesis and removal of RNA primer is catalysed by: [Question ID = 15215] 1. DNA Pol δ and FEN1, respectively. [Option ID = 30859] 2. DNA Pol ε and PCNA, respectively. [Option ID = 30860] 3. DNA Pol α and PCNA, respectively. [Option ID = 30857] 4. DNA Pol a and FEN1, respectively. [Option ID = 30858]

• DNA Pol a and PCNA, respectively. [Option ID = 30857] www.FirstRanker.com

FirstRanker.com

www.FirstRanker.com

³⁴⁾ To assess the impact of a newly identified drug when added to a culture of subconfluent HeLa cells, a researcher analyzes the fluorescence activated cell sorting (FACS) profile of untreated (- Drug) cells versustreated (+ Drug) cells.

Based on the FACS profile shown above, this drug inhibits

[Question ID = 15212]

1. S phase of the cell cycle [Option ID = 30846]

- 2. G2 /M phase of the cell cycle [Option ID = 30847]
- 3. G1 phase of the cell cycle [Option ID = 30845]
- 4. G0 phase of cell cycle [Option ID = 30848]

Correct Answer :-

• G1 phase of the cell cycle [Option ID = 30845]

35)

In a mitochondrial respiration experiment, a researcher observed the following profile of oxygen consumption upon addition of the following compounds at times I, II and III. (i) ADP + Pi (ii) Dinitrophenol, an uncoupler (iii) Oligomycin, an ATPase|inhibitor (iv) Cyanide (v) Succinate Under the following describes the profile appropriately? Which of the following describes the profile appropriately? www.FirstRanker.com

 I - b; II - d I - a; II - d I - a; II - c; I - a; II - e 	III – e [Option ID = 308 III – c [Option ID = 308 III – b [Option ID = 308 III – c [Option ID = 308	www.FirstRanker.com 41] 42] 44] 43]	www.FirstRanker.co
Correct Answe	er :-	0.4.1.1	
• 1 – D; 11 – d	r = 0	541]	
36) For a FRE fluoresces at 5 emits fluoresc experiment, w	F experiment, an oligor 90 nm. Another oligon ence at 680 nm. Which hereby the two oligonu	nucleotide was labeled with Cy3 ucleotide was labeled with Cy5 of the following observations in ucleotides anneal?	dye, which absorbs at 540 nn dye, which absorbs at 590 nm ndicate a successful FRET
[Question ID =	: 15190]		
 Excitation at ! Excitation at ! Excitation at ! Excitation at ! 	540 nm results in fluoresce 540 nm results in fluoresce 540 nm results in no fluore 590 nm results in fluoresce	ence emission at 680 nm [Option ID ence emission at 590 nm [Option ID escence emission [Option ID = 3076 ence emission at 680 nm [Option ID	= 30759] = 30757] 50] = 30758]
Correct Answe	er :-		
• Excitation at	540 nm results in fluoreso	cence emission at 590 nm [Option]	ID = 30757]
 <i>lin-4</i> and <i>lin-1</i> and P1 cells [<i>lin-4</i> and <i>lin-1</i>. <i>lin-4</i> and <i>lin-1</i>. <i>lin-4</i> encodes [Option ID = 	 4 are genes that are nam Option ID = 30710] 4 both encode miRNAs that 4 are <i>C</i>. elegans versions 4 miRNA that represses //i 30709] 	ned for their control of the first divis nat serve as cell-cell signaling molec of the HOX genes [Option ID = 307 m-14 translation, which in turn regul	ion, and hence the lineage of the i ules in <i>c</i> . elegans [Option ID = 30 '11] ates the timing of larval developm
 <i>lin-4</i>encodes [Option ID = 	r :- a miRNA that represses 30709]	<i>lin-14</i> translation, which in turn reg	ulates the timing of larval develo
38) What is th 10.8.	e isoelectric point (pI)	of the amino acid lysine with p	K _{a1} = 2.2, pK _{a2} = 9.0 and pK _{a3}
[Question ID =	: 15187]		
1. 7.3 [Option II 2. 5.6 [Option II) = 30745]) = 30747]) = 30746]		
3. 9.9 [Option Il 4. 9 [Option ID	- 50746]		
 3. 9.9 [Option II 4. 9 [Option ID Correct Answer	- 30740] 8 7 :-		
 3. 9.9 [Option II 4. 9 [Option ID Correct Answer 7.3 [Option I 	:r :- D = 30745]		
 3. 9.9 [Option II 4. 9 [Option ID Correct Answer 7.3 [Option II 	r :- D = 30745]		

2. Red blood	ells would not be able to transport overant Option ID = 306971	www.FirstRanker.co
4. Blood clot	prmation would be inhibited. [Option $ID = 30700$]	
Correct Ans	ver :-	
Red blood	cells would not be able to transport oxygen [Option ID = 30697]	
40) Which of the transloc	f the following changes in the gene encoding a lysosomal r ation of the protein across the ER membrane? [Question ID	protein is not expected to imp = 15188]
 The conversion isoleucine (2) The conversion isoleucine (30750) 	sion of the two leucine codons and one phenylalanine codon near to odon, an aspartic acid codon and a glutamic acid codon, respective sion of the sole lysine codon after the translation initiation codon to	the translation initiation codon to ely [Option ID = 30752] o an arginine codon [Option ID =
3. The conver	sion of the sole lysine codon after the translation initiation codon to	o an aspartic acid codon [Option]
4. The deletic 30749]	n of the nucleotide specifying the 25 amino acids following the tran	nslation initiation codon [Option II
Correct Ans	ver :-	
 The deletic = 307491 	n of the nucleotide specifying the 25 amino acids following the tr	anslation initiation codon [Option
41) Compet	itive inhibition is overcome by adding substrate shows that	•
41) Compet	tive inhibition is overcome by adding substrate shows that	
[Question II	= 15210]	
 enzymes a enzymes a enzymes a enzymes a 	e pH dependent [Option ID = 30839] e specific in nature [Option ID = 30838] e biocatalysts [Option ID = 30837] e made of proteins [Option ID = 30840]	
Correct Ans	ver :-	
• enzymes a	e biocatalysts [Option ID = 30837]	
42) The tec	nique known as two-hybrid analysis for detecting interact	ing gene products depend on
[Question II) = 15218]	
 Direct bind Activation (Stimulation Having a p ID = 30872 	ng of a Gal4p activation domain to a DNA sequence in the promote f DNA polymerase by the nearby binding of hybridizing protein con of transcription by interaction of two Gal4p domains via fused prot omoter that responds directly to one of the two proteins whose int]	er region. [Option ID = 30870] nplexes. [Option ID = 30869] tein sequences. [Option ID = 308 teractions is beingmeasured. [Opt
Correct Ans	ver :-	
Activation	of DNA polymerase by the nearby binding of hybridizing protein c	omplexes. [Option ID = 30869]
43) The enz homologous	yme of <i>E.coli</i> is a nuclease that initiates the repair of doubl recombination	e stranded DNA breaks by
[Question II	e = 15207]	
1. RNA polym	erase [Option ID = 30827]	
2. DNA glycos 3. DNA ligase	ylase [Option ID = 30825] [Option ID = 30826]	
S. DIVA IIYase	[Option ID = 30020]	

 DNA glycosylase [Option ID = 30825] 	ww.FirstRanker.com	www.FirstRanker.con
44) The putative interaction between tw the following technique cannot be emplo	vo proteins was identified by byed to further confirm the in	yeast two hybrid assays. Which teraction?
[Question ID = 15182]		
 Electrophoretic Mobility Shift Assay [Option Fluorescence Resonance Energy Transfer at Protein Microarray [Option ID = 30727] Pull Down Assay [Option ID = 30725] 	ID = 30728] nalysis [Option ID = 30726]	
Correct Answer :-		
• Pull Down Assay [Option ID = 30725]		
45) The molecule which acts directly on		rtio voto io
45) The molecule which acts directly on	an enzyme to lower its cataly	ylic rate is
1. regulator [Option ID = 30863] 2. repressor [Option ID = 30861]		
3. inhibitor [Option ID = 30864]		
4. modulator [Option ID = 30862]		
Correct Answer :-		
• repressor [Option $ID = 30861$]		
46) The pluripotency of the inner cell ma factors namely	ass in mammals is maintained	d by a core of three transcription
46) The pluripotency of the inner cell ma factors namely [Question ID = 15214]	ass in mammals is maintained	d by a core of three transcription
 46) The pluripotency of the inner cell mathematical factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085] 	ass in mammals is maintained	d by a core of three transcription
 46) The pluripotency of the inner cell mathematical factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4 Sox 2 and Nanog [Option ID = 30854 	ass in mammals is maintained 6] 4] 31	d by a core of three transcription
 46) The pluripotency of the inner cell mathematical factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 3085 3. Oct 4, Sox 2 and Nanog [Option ID = 3085 4. Sox 2, Nanog and Cdx 2 [Option ID = 3085 	ass in mammals is maintained 6] 4] 3] 5]	d by a core of three transcription
 46) The pluripotency of the inner cell mathematicators namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 30854 4. Sox 2, Nanog and Cdx 2 [Option ID = 308555 Correct Answer :- 	ass in mammals is maintained 6] 6] 3] 5]	d by a core of three transcription
 46) The pluripotency of the inner cell mathematicators namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 30854 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 308554 4. Sox 2, Nanog and Cdx 2 [Option ID = 308555555555555555555555555555555555555	ass in mammals is maintained 6] 6] 3] 5]	d by a core of three transcription
 46) The pluripotency of the inner cell mathematical factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 308554. Sox 2, Nanog and Cdx 2 [Option ID = 308555555555555555555555555555555555555	ass in mammals is maintained 6] 6] 7] 73] 53] 53]	d by a core of three transcription
 46) The pluripotency of the inner cell mathematicators namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 30854 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 30854 4. Sox 2, Nanog and Cdx 2 [Option ID = 30855 Correct Answer :- Oct 4, Sox 2 and Nanog [Option ID = 30855 47) The precursor of all N-linked oligosation ID = 152011 	ass in mammals is maintained 6] 1] 3] 5] 53] 53]	J by a core of three transcription
 46) The pluripotency of the inner cell mathematical factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 3085 3. Oct 4, Sox 2 and Nanog [Option ID = 3085 4. Sox 2, Nanog and Cdx 2 [Option ID = 3085 Correct Answer :- Oct 4, Sox 2 and Nanog [Option ID = 3085 47) The precursor of all N-linked oligosa [Question ID = 15201] 	ass in mammals is maintained 6] 6] 7] 5] 53] 53] 53] 53] 53] 53]	1 by a core of three transcription
 46) The pluripotency of the inner cell matrix factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 30854 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 308554 4. Sox 2, Nanog and Cdx 2 [Option ID = 308555555555555555555555555555555555555	ass in mammals is maintained 6] 4] 3] 5] 53] 53] 53] 53] 54 55 55 55 55 55 55 55 55 55	1 by a core of three transcription
 46) The pluripotency of the inner cell matrix factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 30854 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 308554 4. Sox 2, Nanog and Cdx 2 [Option ID = 308555555555555555555555555555555555555	ass in mammals is maintained 6] 6] 7] 5] 53] 53] 53] 53] 53] 53] 54] 55] 55] 55] 55] 55] 55] 55	1 by a core of three transcription
 46) The pluripotency of the inner cell matrix factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 30854 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 30854 3. Oct 4, Sox 2 and Nanog [Option ID = 30855 4. Sox 2, Nanog and Cdx 2 [Option ID = 30855 Correct Answer :- Oct 4, Sox 2 and Nanog [Option ID = 30855 47) The precursor of all N-linked oligosat [Question ID = 15201] 1. Two glucose, nine mannose and three N-act 2. Two glucose, eight mannose and three N-act 3. Three glucose, nine mannose and two N-act 	ass in mammals is maintained 6] 6] 7] 5] 53] 53] 53] 53] 53] 53] 53]	1 by a core of three transcription 3 0802] 3 0801] 3 0801] 3 0803]
 46) The pluripotency of the inner cell matrix factors namely [Question ID = 15214] 1. Oct 4, Cdx 2 and Nanog [Option ID = 3085 2. Oct 4, Sox 2 and Cdx 2 [Option ID = 3085 4. Sox 2, Nanog and Cdx 2 [Option ID = 3085 4. Sox 2, Nanog and Cdx 2 [Option ID = 3085 Correct Answer :- Oct 4, Sox 2 and Nanog [Option ID = 3085 47) The precursor of all N-linked oligosa [Question ID = 15201] 1. Two glucose, nine mannose and three N-act 2. Two glucose, eight mannose and three N-act 3. Three glucose, nine mannose and three N-act 3. Three glucose, nine mannose and three N-act 4. Three glucose, nine mannose and two N-act 	ass in mammals is maintained 6] 9] 3] 5] 53] 53] ccharides contains: retylglucosamine. [Option ID = 30 acetylglucosamine. [Option ID = 30 acetylglucosamine. [Option ID = 30 acetylglucosamine. [Option ID = 30 acetylglucosamine. [Option ID = 30	1 by a core of three transcription 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1

 Increase the activity of phosphodiestersae [Option ID = 30810] Decrease the intracellular levels of cAMP [Option ID = 30812] Decrease the activity of phosphorylase kinase [Option ID = 308 	r.com www.FirstRanker.con
Correct Answer :- Decrease the activity of phosphorylase kinase [Option ID = 30] 	0809]
49) The A ₂₆₀ /A ₂₈₀ ratio of a DNA sample was observed to obtained by subjecting the DNA sample to	b be 1.2. An increase in this ratio can be
[Question ID = 15183]	
 Both A and B [Option ID = 30731] TCA treatment [Option ID = 30730] Saline treatment [Option ID = 30732] Phenol extraction [Option ID = 30729] 	
Correct Answer :-	
• Phenol extraction [Option ID = 30729]	
50) The phospholipids of plasma membranes routinely ex movement? I. Diffusion in the plane of the bilayer II. Translocation from one side of the bilayer to the other s III. Rotation of fatty-acid residues around saturated carbo	hibit which of the following Forms of side on atoms
[Question ID = 15219]	
1. III only [Option ID = 30875] 2. I and III only [Option ID = 30876]	
3. I only [Option ID = 30873] 4. II only [Option ID = 30874]	
3. I only [Option ID = 30873] 4. II only [Option ID = 30874] Correct Answer :-	

Man ..