DU PhD in Electronics

Topic:- DU_J19_PHD_ELEC

1) An electron beam with 3 eV energy strikes a crystal of cadmium sulfide (CdS) (bandgap $\mathrm{E}_{\mathrm{g}}=\mathbf{2 . 4 5}$
 eV) of the electrons is
[Question ID = 14763]
1. 0.55 eV [Option ID = 29050]
2. 1 eV [Option ID = 29049]
3. 1.45 eV [Option ID = 29051]
4. 0.05 eV [Option ID = 29052]

Correct Answer :-

- 1 eV [Option ID = 29049]

2) An ideal photodiode is made of a material with a bandgap energy of 2.35 eV . It operates at 300 K and is illuminated by monochromatic light with wavelength of $\mathbf{4 0 0} \mathbf{~ n m}$. Its maximum efficiency is
[Question ID = 14772]
1. 80% [Option ID $=29088$]
2. 25% [Option ID $=29085$]
3. 75.7% [Option ID $=29086$]
4. 48\% [Option ID = 29087]

Correct Answer :-

- 25% [Option ID = 29085]

3) If line A of X-ray beam gives a first order reflection maxima at a glancing angle of 30° to the smooth face of a crystal and line B of $\lambda=0.92 \AA$ gives a third order reflection maxima at an angle 60° from the face of same crystal, then the wavelength of line A is
[Question ID = 14769]
1. $3.36 \AA$ [Option ID $=29073$]
2. $6.72 \AA$ [Option ID $=29076]$
3. $0.84 \AA$ [Option ID $=29075$]
4. $1.59 \AA$ [Option ID $=29074$]

Correct Answer :-

- $3.36 \AA$ [Option ID = 29073]

4) If $\psi=K e i n \beta$ then the value of ' K ' after normalization in the limits 0 to π is
[Question ID = 15449]

Correct Answer :-
$\frac{1}{2} \sqrt{\pi}$
[Option ID = 31793]
5) In a microwave test bench, a dip is shown on the CRO display by rotating the micrometer of wavemeter, which indicates
[Question ID = 14785]

1. frequency of microwave signal is not same as frequency of wavemeter [Option ID = 29139]
2. frequency of microwave signal is zero [Option ID $=29137$]
3. frequency of microwave signal is same as frequency of wavemeter [Option ID $=29138$]
4. no signal propagates [Option ID $=29140$]

Correct Answer :-

- frequency of microwave signal is zero [Option ID $=29137$]

6) In a p-type Si sample the hole concentration is $8 \times 10^{15} / \mathrm{cm}^{3}$. The intrinsic carrier concentration is $4 \times 10^{10} / \mathrm{cm}^{\mathbf{3}}$. The electron concentration is
[Question ID = 14766]
1. zero [Option ID $=29061$]
2. $4 \times 10^{10} / \mathrm{cm}^{3}$ [Option ID $=29062$]
3. $1.5 \times 10^{25} / \mathrm{cm}^{3}$ [Option ID $=29063$]
4. $2 \times 10^{5} / \mathrm{cm}^{3}$ [Option ID $=29064$]

Correct Answer :-

- zero [Option ID = 29061]

7) Sigma Electronics sells a microwave receiver (A) having an operating spot noise figure of $\mathbf{1 0} \mathbf{d B}$ when driven by a source with effective noise temperature $\mathbf{1 3 0} \mathbf{K}$. Deltalink (B) sells a receiver with a standard spot noise figure of 6 dB when driven by a source with effective noise temperature 190 K . Zebrotronics (C) sells a receiver with standard spot noise figure of 6 dB when driven by a source with effective noise temperature $\mathbf{2 9 0} \mathrm{K}$. The best receiver to purchase is
[Question ID = 14782]
1. (A) [Option ID $=29125]$
2. None [Option ID = 29128]
3. (C) [Option ID $=29126]$
4. (B) [Option ID = 29127]
8) A silicon bar of $1 \mu \mathrm{~m}$ long and $100 \mu \mathrm{~m}^{\mathbf{2}}$ in cross-sectional area is doped with $\mathbf{1 0}^{\mathbf{1 7}} \mathrm{cm}^{\mathbf{- 3}}$ Phosphorus. The saturation velocity is $10^{7} \mathbf{~ c m} / \mathrm{sec}$. The current at 300 K with $\mathbf{1 0 V}$ applied is
[Question ID = 14762]
1. 0.16 A [Option ID $=29047]$
2. 0.8 A [Option ID $=29048$]
3. 0.5 A [Option ID $=29046]$
4. 1.2 A [Option ID = 29045]

Correct Answer :-

- 1.2 A [Option ID = 29045]

9) A silicon PN junction diode under reverse bias has depletion region of width $20 \mu \mathrm{~m}$. Given, the relative permittivity of silicon, $\varepsilon_{r}=\mathbf{1 2 . 7}$ and the permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. The depletion capacitance of the diode per square meter is
[Question ID = 14767]
1. $7.65 \mu \mathrm{~F}$ [Option ID $=29065$]
2. $3 \mu \mathrm{~F}$ [Option ID $=29067]$
3. $8.15 \mu \mathrm{~F}$ [Option ID $=29066$]
4. $5.62 \mu \mathrm{~F}$ [Option ID $=29068$]

Correct Answer :-

- $7.65 \mu \mathrm{~F}$ [Option ID = 29065]

10) A silica optical fiber with a core diameter large enough to be considered by ray theory analysis has a core refractive index of 1.65 and a cladding refractive index of 1.52. The numerical aperture (NA) of the fiber is
[Question ID = 14774]
1. 0.32 [Option ID $=29094$]
2. 0.56 [Option ID $=29096]$
3. 0.42 [Option ID $=29095]$
4. 0.64 [Option ID $=29093$]

Correct Answer :-

- 0.64 [Option ID $=29093$]

11) A step-index fiber has numerical aperture (NA) of 0.16 and its core index $\left(n_{1}\right)=1.45$. If core diameter $=0.6 \mathrm{~cm}$ and $\lambda=0.9 \mathrm{~nm}$ then normalized frequency of the fiber is \qquad
[Question ID = 14776]
1. $6.70 \times 10^{3} \mathrm{~Hz}$ [Option ID $=29103$]
2. $1.67 \times 10^{3} \mathrm{~Hz}$ [Option ID $\left.=29101\right]$
3. $3.35 \times 10^{3} \mathrm{~Hz}$ [Option ID $=29102$]
4. $1.83 \times 10^{3} \mathrm{~Hz}$ [Option ID $=29104$]
www.FirstRanker.com
12) A three level laser emits laser light near the centre of visible band. If $E_{2}-E_{1}=2.36 \mathrm{eV}$ then the wavelength of radiation is
[Question ID = 14777]
1. 550 nm [Option ID $=$ 29105]
2. 670 nm [Option ID $=29107$]
3. 620 nm [Option ID $=29108$]
4. 450 nm [Option ID $=29106$]

Correct Answer :-

- 550 nm [Option ID = 29105]

13) $\log (1+x)=$

\qquad
[Question ID $=14750$]

$$
\begin{aligned}
& -\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots\right)|x|<1 \\
& \text { 2. } x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& \text { [Option ID = 28997] } \\
& \text { 3. } \left.l+x+x^{2}+x^{3}+\cdots \quad \text { [Option ID }=28999\right] \\
& \text { [Option ID = 29000] } \\
& \text { 4. } x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots|x|<1 \\
& \text { [Option ID = 28998] }
\end{aligned}
$$

Correct Answer :-

$$
-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots\right)|x|<1
$$

14) If the bandgap of GaAsP is 1.98 eV then the color of emitted light is
[Question ID = 14770]
1. Blue [Option ID $=29077$]
2. Green [Option ID $=29078$]
3. Yellow [Option ID $=29080$]
4. Red [Option ID = 29079]

Correct Answer :-

- Blue [Option ID = 29077]

15) A laser beam emerging from a laser tube operating at 800 nm has a cross-sectional diameter of 2 mm . The diameter of the beam at a distance of $1 \mathbf{k m}$ is approximately
[Question ID = 14779]
1. 10 cm [Option ID = 29116]
2. 10 mm [Option ID $=29113$]
3. 80 cm [Option ID $=29114]$
4.8 cm [Option ID $=29115]$
www.FirstRanker.com
16) A Si sample ($n_{i}=1.5 \times 10^{10}$ atoms $/ \mathrm{cm}^{3}$) is doped with 10^{17} As atoms $/ \mathrm{cm}^{3}$. The position of E_{f} related to E_{i} is
[Question ID = 14761]
1. 0.895 eV [Option ID $=29043$]
2. 0.407 eV [Option ID $=29044]$
3. 0.532 eV [Option ID $=29042]$
4. 0.217 eV [Option ID = 29041]

Correct Answer :-

- 0.217 eV [Option ID = 29041]

17) Attenuator reduces the microwave power in
[Question ID = 14783]
1. uni-direction [Option ID $=29130$]
2. None of these [Option ID = 29132]
3. multi-direction [Option ID $=29131$]
4. bi-direction [Option ID $=29129$]

Correct Answer :-

- bi-direction [Option ID = 29129]

18) A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is
[Question ID = 14746]
1. 3/10 [Option ID $=28982$]
2. $1 / 12$ [Option ID $=28981]$
3. $1 / 20$ [Option ID $=28984$]
4. $1 / 2$ [Option ID $=28983]$

Correct Answer :-

- 1/12 [Option ID = 28981]

19) Electron mobility in Si at room temperature (300 K) is $1400 \mathrm{~cm}^{\mathbf{2}} \mathrm{v}^{\mathbf{- 1}} \mathrm{s}^{\mathbf{- 1}}$. The diffusion coefficient of electrons is
[Question ID = 14765]
1. $36.22 \mathrm{~cm}^{2} / \mathrm{s}$ [Option ID $=29057$]
2. $62.25 \mathrm{~cm}^{2} / \mathrm{s}$ [Option ID $\left.=29059\right]$
3. $32.76 \mathrm{~cm}^{2} / \mathrm{s}$ [Option ID $=29060$]
4. $49.16 \mathrm{~cm}^{2} / \mathrm{s}$ [Option ID $=29058$]

Correct Answer :-

- $36.22 \mathrm{~cm}^{2} / \mathrm{s}$ [Option ID $=29057$]

1. $0.5 \exp \left(\boldsymbol{\pi}^{\boldsymbol{\pi}}\right)$ [Option ID $\left.=31802\right]$
2. $\exp (\boldsymbol{\pi})$ [Option ID $=31801]$
3. $\exp (\boldsymbol{\pi})-1$ [Option ID $=31804]$
4. $\exp (\boldsymbol{\pi})+1$ [Option ID $=31803$]

Correct Answer :-

- $\exp (\boldsymbol{\pi})$ [Option ID $=31801]$

21) In the expression $6+8 i=10 e^{i \theta}$, the value of θ is,
[Question ID $=14743$]
1. 85.16° [Option ID $=28971$]
2. 53.13° [Option ID $=28972$]
3. 36.16° [Option ID $=28970$]
4. 13.13° [Option ID $=28969$]

Correct Answer :-

- 13.13° [Option ID $\left.=28969\right]$

22) In the interval $[0, \pi]$ the equation $x=\cos x$
[Question ID = 15450]
1. exactily one solution [Option ID $=31799$]
2. exactly two solutions [Option ID $=31797]$
3. no solutions [Option ID $=31798$]
4. an infinite number of solutions [Option ID $=31800$]

Correct Answer :-

- exactly two solutions [Option ID = 31797]

23) Choose the correct match out of the following options given below

Column I
P. $2^{\text {nd }}$ order DEs
Q. Non-linear algebraic equations
R. Linear algebraic equations
S. Numerical integration
[Question ID = 14754]

1. P->4 Q->1 R->2 S->3 [Option ID = 29014]
2. $\mathrm{P}->4 \mathrm{Q}->2 \mathrm{R}->3 \mathrm{~S}->1$ [Option ID $=29015]$
3. P->4 Q->2 R->1 S->3 [Option ID = 29016]
4. P->1 Q->2 R->3 S->4 [Option ID = 29013]

Correct Answer :-

- P->1 Q->2 R->3 S->4 [Option ID = 29013]

24) Helical antenna has the following polarization

Correct Answer :-

- linear [Option ID = 29149]

25) Match the typical spectroscopic regions specified in Part-I with corresponding type of transitions in Part-II and choose the correct answer from the following options.

Part-I

K. Infrared region
L. Ultraviolet visible region
M. X-ray region
N. Y-ray region

Part-II

1. Electron transition involving valance electrons
2. Nuclear transitions
3. Vibrational transitions of molecules
4. Transitions involving inner shell electrons
[Question ID = 14775]
5. $\mathrm{K}->4 \mathrm{~L}->2 \mathrm{M}->1 \mathrm{~N}->3$ [Option ID $=29098$]
6. $\mathrm{K}->3 \mathrm{~L}->4 \mathrm{M}->1 \mathrm{~N}->2$ [Option ID $=29100$]
7. $\mathrm{K}->3 \mathrm{~L}->1 \mathrm{M}->4 \mathrm{~N}->2$ [Option ID $=29097$]
8. $\mathrm{K}->1 \mathrm{~L}->2 \mathrm{M}->3 \mathrm{~N}->4$ [Option ID $=29099$]

Correct Answer :-

- K->3 L->1 M->4 N->2 [Option ID = 29097]

26)

The particular integral of $\frac{d^{2} y}{d x^{2}}+y=\cos 2 x$ is
[Question ID = 14757]

$$
\begin{aligned}
& -\frac{1}{3} \sin 2 x \\
& \text { [Option ID = 29027] } \\
& -\frac{1}{3} \cos 2 x \\
& \text { [Option ID }=29026] \\
& \frac{1}{3} \cos 2 x \\
& \text { 3. } 3 \\
& \text { [Option ID = 29025] } \\
& \frac{1}{3} \sin 2 x \\
& \text { [Option ID = 29028] }
\end{aligned}
$$

Correct Answer :-
$\frac{1}{3} \cos 2 x$
[Option ID $=29025$]
27)

If the temperature at any point in space is given by $T=x y+y z+z x$, direction of T in the direction of vector $3 \hat{i}-4 \hat{k}$ at the point $(1,1,1)$ is
[Question ID = 14755]

Correct Answer :-

- $-5 / 2$ [Option ID $=29017$]

28)

Eigen values of the matrix $\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 i \\ 0 & 0 & 2 i & 0\end{array}\right]$ are
[Question ID = 14756]

1. 1,0,2,3 [Option ID $=29021]$
2. $-1,1,0,3$ [Option ID $=29024]$
3. $-1,1,0,2$ [Option ID $=29023$]
4. $-2,-1,1,2$ [Option ID = 29022]

Correct Answer :-

- 1,0,2,3 [Option ID = 29021]

29)

$$
\int_{0}^{2} \int_{0}^{2}\left(x^{2} y+x y^{3}\right) d x d y \quad \text { equals to }
$$

[Question ID = 14747]

1. 20/3 [Option ID $=28987]$
2. $40 / 3$ [Option ID $=28986$]
3. 0 [Option ID $=28988$]
4. 4/3 [Option ID $=28985$]

Correct Answer :-

- 4/3 [Option ID = 28985]

30)

The numerical solution of the equation $f(x)=x+\sqrt{x}-3=0$ can be obtained using Newton-Raphson method. If the starting value is $x=2$ for the iteration, the value of x that is to be used in the next step is
[Question ID = 14760]

1. 0.306 [Option ID $=29038$]
2. 2.432 [Option ID $=29039]$
3. 1.694 [Option ID $=29040]$
4. 0.732 [Option ID $=29037]$

Correct Answer :-

- 0.732 [Option ID $=29037$]

FirstRanker.com
 Firstranker's choice

 t only is
[Question ID = 14745]
$\frac{(1-2 t)}{2 t(1-t)^{2}}$
[Option ID = 28979]
$\frac{2 t(1-2 t)^{2}}{(1-t)}$
[Option ID $=28980$]
$\frac{t(1-2 t)^{2}}{(1-t)}$ [Option ID = 28977]
4. $\frac{2(1-t)}{(1-2 t)^{2}}$

Correct Answer :-

$$
\frac{t(1-2 t)^{2}}{(1-t)}
$$

32)

The value of $\operatorname{Lim}_{x \rightarrow 8}\left(\frac{x^{\frac{1}{3}}-2}{x-8}\right)=$ \qquad
[Question ID = 14751]

1. 1 [Option ID $=29004]$
2. $1 / 4$ [Option ID $=29002$]
3. $1 / 12$ [Option ID $=29001$]
4. 0 [Option ID $=29003$]

Correct Answer :-

- $1 / 12$ [Option ID $=29001]$

33) For an n-channel MOSFET with a gate oxide ($\varepsilon_{r}=3.9$) thickness of $10 \mathrm{~nm}, \boldsymbol{v}_{\text {th }}=\mathbf{0 . 6} \mathrm{V}$ and $\boldsymbol{w}=\mathbf{2 5}$ $\mu \mathrm{m}, L=1 \mu \mathrm{~m}$ and electron mobility in channel, $\mu=200 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$. The drain current at $v_{G S}=5 \mathrm{~V}$ and $V_{D S}=0.1 \mathrm{~V}$ is
[Question ID = 14778]
1. $7.51 \times 10^{-4} \mathrm{~A}$ [Option ID $=29111$]
2. $3.05 \times 10^{-5} \mathrm{~A}$ [Option ID $\left.=29109\right]$
3. $5.1 \times 10^{-6} \mathrm{~A}$ [Option ID $=29110$]
4. $8 \times 10^{-5} \mathrm{~A}$ [Option ID $\left.=29112\right]$

Correct Answer :-

- $3.05 \times 10^{-5} \mathrm{~A}$ [Option ID $=29109$]

[^0]3. $e^{i \pi / 3}$ [Option ID $\left.=28974\right]$
4. $e^{2 i \pi / 3}$ [Option ID $\left.=28973\right]$

Correct Answer :-

- $e^{2 i \pi / 3}$ [Option ID $=28973$]

35) A small concentration of minority carriers is injected into a homogeneous Semiconductor crystal at one point. An electric field of $\mathbf{1 0} \mathbf{V} / \mathbf{c m}$ is applied across the crystal and this moves the minority carriers by a distance of 1 cm in $20 \mu \mathrm{sec}$. The mobility (in $\mathrm{cm}^{2} / \mathrm{v}-\mathrm{sec}$) of carriers is
[Question ID = 14768]
1. 5000 [Option ID $=29072$]
2. 2000 [Option ID $=29069$]
3. 4000 [Option ID $=29071$]
4. 3000 [Option ID $=29070$]

Correct Answer :-

- 2000 [Option ID = 29069]

36) Let the continuous random variable X denote the current measured in a thin copper wire in milli amperes (mA). Assume that the range of X is $4.9 \leq x \leq 5.1$ and $f(x)=5$. The probability that a current is less than 5 mA is
[Question ID = 14748]
1. 0.4 [Option ID $=28990]$
2. 0.2 [Option ID $=28992]$
3. 0.5 [Option ID $=28989]$
4. 0.3 [Option ID $=28991$]

Correct Answer :-

- 0.5 [Option ID = 28989]

37) A transmission line has a characteristic impedance of 75Ω and a resistance of $5 \Omega / \mathrm{m}$. If the line is distortion less, the attenuation constant (in Np / m) is
[Question ID = 14792]
1. 0.066 [Option ID $=29167]$
2. 0.033 [Option ID $=29168$]
3. 0.022 [Option ID $=29165]$
4. 0.055 [Option ID $=29166$]

Correct Answer :-

- 0.022 [Option ID = 29165]

38) A transmitting antenna with a 300 MHz carrier frequency produces 4 kW of power. If both antennas has unity power gain, the power received by another antenna at a distance of $\mathbf{2} \mathbf{~ k m}$ is
[Question ID = 14791]
1. 8.44 mW [Option ID = 29161]
2. $4.4 \mu \mathrm{~W}$ [Option ID $=29163$]
[^1]
Correct Answer:-

- 8.44 mW [Option ID $=29161$]

39) The power in power meter is displayed as -25 dB , when connected at the output of $\mathbf{3 0} \mathbf{d B}$ attenuator. The input power applied to this attenuator is
[Question ID = 14789]
1. 10.2 mW [Option ID = 29154]
2. 3.16 mW [Option ID = 29156]
3. 1.5 mW [Option ID = 29155]
4. 5 mW [Option ID = 29153]

Correct Answer :-

- 5 mW [Option ID = 29153]

40) The short-circuit current delivered by a 10 cm by 10 cm photocell (with 100% quantum efficiency) illuminated by monochromatic light of 400 nm wavelength with a power density of 1000 $\mathrm{w} / \mathrm{m}^{2}$ is
[Question ID = 14773]
1. 6.85A [Option ID $=29092$]
2. 5A [Option ID $=29089]$
3. 8.32A [Option ID $=29091$]
4. 3.2A [Option ID $=29090$]

Correct Answer :-

- 5A [Option ID = 29089]

41) The recursion relation to solve $x-e^{-x}$ using Newton Raphson method is
[Question ID = 14758]

$$
x_{n+1}=\left(1+x_{n}\right) \frac{e^{-x_{n}}}{1+e^{-x_{n}}}
$$

4. $1+e^{-x_{n}}$ [Option ID = 29031]

Correct Answer :-

$$
x_{n+1}=e^{-x_{n}}
$$

42) The temperature required to generate electron-hole pairs in silicon ($\mathrm{E}_{\mathrm{g}}=1.1 \mathrm{eV}$) is (given electron charge $=1.6 \times 10^{-19} \mathrm{~J}$, Boltzman constant $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$)

$$
\begin{aligned}
& x_{n+1}=e^{-x_{n}} \\
& \text { 1. } \quad \text { [Option ID }=29029 \text {] } \\
& x_{n+1}=x_{n}-e^{-x_{n}} \\
& x_{n+1}=\left(1+x_{n}\right)^{2} \frac{e^{-x_{n}}-1}{1+e^{-x_{n}}}
\end{aligned}
$$

2. 4174 K [Option ID $=29056$]
3. $8502 \mathrm{~K}[$ Option ID $=29055]$
4. 1130 K [Option ID $=29054]$

Correct Answer :-

- 1522 K [Option ID = 29053]

43) The source of microwaves in a microwave oven is
[Question ID = 14786]
1. klystron [Option ID = 29141]
2. cyclotron [Option ID = 29144]
3. gyratron [Option ID = 29142]
4. magnetron [Option ID = 29143]

Correct Answer :-

- klystron [Option ID = 29141]

44) The operating frequency of source in the microwave oven is
[Question ID = 14787]
1. 1.45 GHz [Option ID $=29146$]
2. 4.45 GHz [Option ID $=29148$]
3. 3.45 GHz [Option ID $=29145$]
4. 2.45 GHz [Option ID = 29147]

Correct Answer :-

- 3.45 GHz [Option ID $=29145$]

45) The line width of a $\mathrm{He}-\mathrm{Ne}$ laser is 0.01 nm and the cross-sectional area of the beam is $0.01 \mathrm{~cm}^{2}$. If the output power is 1 mW , the radiation intensity per unit wavelength (in Watt/ cm^{3}) is
[Question ID = 14780]
1. 10^{-8} [Option ID $=29118$]
2. 10^{10} [Option ID $\left.=29117\right]$
3. 10^{8} [Option ID $\left.=29119\right]$
4. 10^{-10} [Option ID $=29120$]

Correct Answer :-

- 10^{10} [Option ID $\left.=29117\right]$

46) The application of VSWR meter to measure
[Question ID = 14784]
1. air pressure [Option ID = 29136]
2. light intensity [Option ID = 29134]
3. SWR [Option ID = 29133]
4. scattering parameter [Option ID $=29135$]
47) The dependence of Doppler broadened line width of a laser transition on temperature, T is given as
[Question ID = 14781]
1. T [Option ID $=29121]$
2. $T^{2}[$ Option ID $=29124]$
3. $T^{1 / 2}$ [Option ID $=29122$]
4. $T^{1 / 2}$ [Option ID $\left.=29123\right]$

Correct Answer :-

- T [Option ID $=29121$]

48) The return loss of a device is found to be 40 dB . The voltage standing wave ratio (VSWR) and magnitude of reflection coefficient are respectively
[Question ID = 14790]
1. -1.02 and 0.1 [Option ID $=29158$]
2. 1.02 and 0.01 [Option ID $=29159$]
3. 2.44 and 0.02 [Option ID $=29160$]
4. 0.81 and 0.1 [Option ID $=29157$]

Correct Answer :-

- 0.81 and 0.1 [Option ID $=29157$]

49) The de Broglie wavelength of an electron accelerated to a potential of 2 kV is \qquad
[Question ID $=$ 14771]
1. $3.46 \times 10^{-11} \mathrm{~m}$ [Option ID $=29084$]
2. $5.49 \times 10^{-9} \mathrm{~m}$ [Option ID $\left.=29083\right]$
3. $1.73 \times 10^{-11} \mathrm{~m}$ [Option ID $=29082$]
4. $2.74 \times 10^{-9} \mathrm{~m}$ [Option ID $=29081$]

Correct Answer :-

- $2.74 \times 10^{-9} \mathrm{~m}$ [Option ID $=29081$]

50) The following equation needs to be numerically solved using the Newton-Raphson method $x^{3}+$ $4 x-9=0$. The iterative equation for this purpose is (k - indicates the interation level)
[Question ID = 14753]

$$
\begin{align*}
x_{k+1} & =\frac{3 x_{k}^{3}+9}{2 x_{k}^{2}+4} \\
x_{k+1} & =x_{k}+3 x_{k}^{2}+4 \tag{OptionID=29012}\\
x_{k+1} & =\frac{4 x_{k}^{3}+3}{9 x_{k}^{2}+2}
\end{align*}
$$

$$
x_{k+1}=\frac{2 x_{k}^{3}+9}{3 x_{k}^{2}+4}
$$

[^0]: 34) For $z^{6}+z^{3}+1=0$, the general solution is
 [Question ID = 14744]
[^1]: 3. 11.8 mW [Option ID $=29162$]
