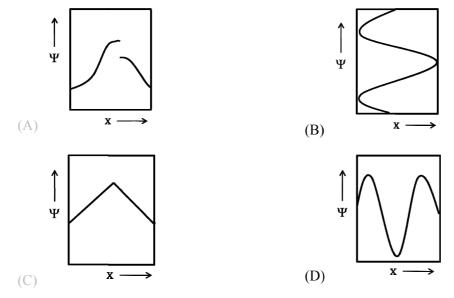


www.FirstRanker.com

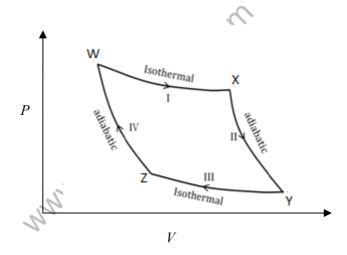
Useful information - CY Chemistry


Avogadro constant	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
Planck constant	$= 6.626 \times 10^{-34} \text{ J s}$
Mass of an electron	$= 9.109 \ge 10^{-31} \text{ Kg}$
Charge of an electron	$= 1.602 \ge 10^{-19} \text{ C}$
Universal gas constant	$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1} = 0.0831 \text{ L bar K}^{-1} \text{ mol}^{-1}$
Boltzmann constant	$= 1.38 \text{ x} 10^{-23} \text{ J} \text{ K}^{-1}$
1 atm pressure	$= 101325 \text{ N m}^{-2}$
Faraday constant	$= 96485 \text{ C mol}^{-1}$
2.303 RT/F at 298 K	= 0.059 V

www.FirstRanker.com

Ranker.com

Q. 1 – Q. 25 carry one mark each.


Q.1 Which one of the following plots represents an acceptable wavefunction?

Q.2 When the operator, $-\hbar^2 d^2/dx^2$, operates on the function e^{-ikx} , the result is

(A)
$$k^2 \hbar^2 e^{-ikx}$$
 (B) $ik^2 \hbar^2 e^{-ikx}$ (C) $i\hbar^2 e^{-ikx}$ (D) $\hbar^2 e^{-ikx}$

Q.3

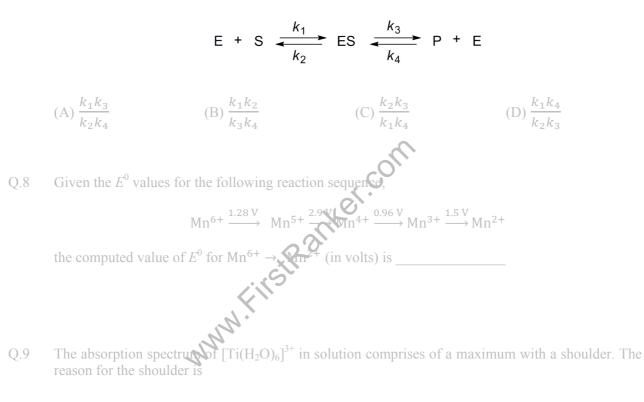
From the above Carnot cycle undergone by an ideal gas, identify the processes in which the change in internal energy is **NON-ZERO**.

- (A) I and II (B) II and IV (C) II and III (D) I and IV
- Q.4 For an ideal gas with molar mass M, the molar translational entropy at a given temperature is proportional to
 - (A) $M^{3/2}$ (B) $M^{1/2}$ (C) e^{M} (D) $\ln(M)$

 FirstRanker.com

 GATE 2015
 www.FirstRanker.com
 www.FirstRanker.com

Q.5 Which one of the following defines the absolute temperature of a system?

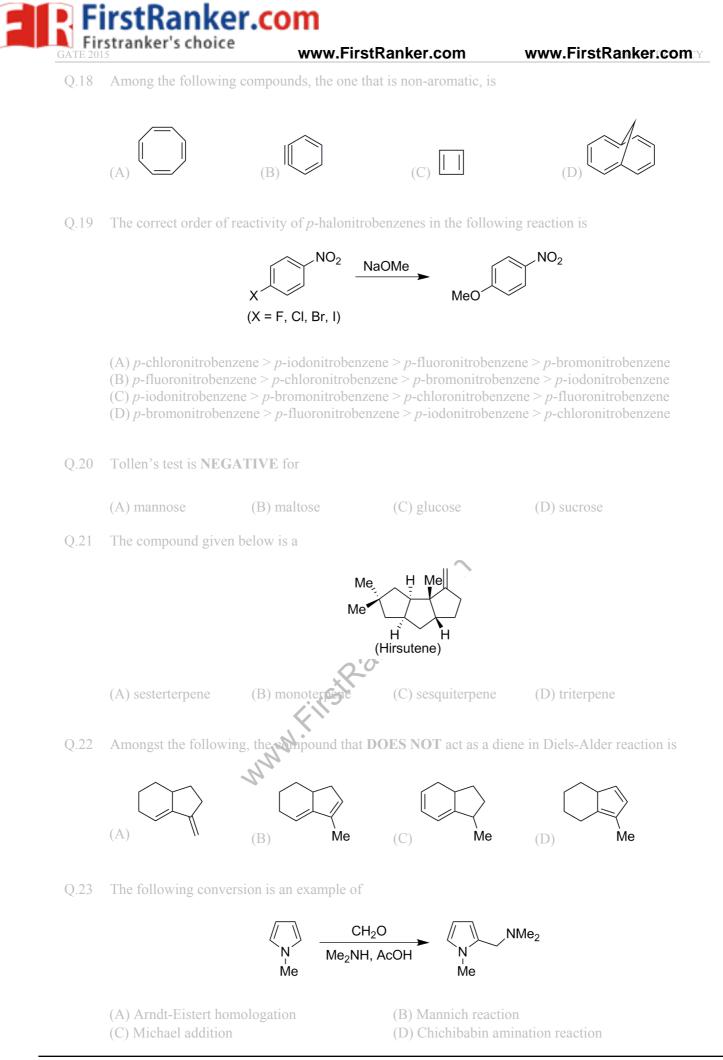

(A) $\left(\frac{\partial U}{\partial S}\right)_V$ (B) $\left(\frac{\partial A}{\partial S}\right)_V$ (C) $\left(\frac{\partial H}{\partial S}\right)_V$ (D) $\left(\frac{\partial G}{\partial S}\right)_V$

Q.6 Which of the following properties are characteristic of an ideal solution?

- (i) $(\Delta_{\min}G)_{T,P}$ is negative
- (ii) $(\Delta_{\min}S)_{T,P}$ is positive
- (iii) $(\Delta_{\min}V)_{T,P}$ is positive
- (iv) $(\Delta_{\min}H)_{T,P}$ is negative

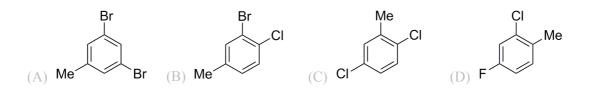
 $(A) (i) and (iv) \qquad (B) (i) and (ii) \qquad (C) (i) and (iii) \qquad (D) (iii) and (iv)$

Q.7 The expression for the equilibrium constant (K_{eq}) for the enzyme catalyzed reaction given below, is



- (A) ligand-to-metal charge transfer (LMCT)
- (B) metal-to-ligand charge transfer (MLCT)
- (C) Jahn-Teller distortion
- (D) nephelauxetic effect

Q.10 The ease of formation of the adduct, $NH_3 \cdot BX_3$ (where, X = F, Cl, Br) follows the order


(A) $BBr_3 < BCl_3 < BF_3$	(B) $BCl_3 < BF_3 < BBr_3$
(C) $BF_3 \leq BCl_3 \leq BBr_3$	(D) $BBr_3 < BF_3 < BCl_3$

GATE 201	stranker's choi	www.First	Ranker.com	www.FirstRanker.com	
Q.11	An efficient catalyst for hydrogenation of alkenes is $[Rh(PPh_3)_3Cl]$. However, $[Ir(PPh_3)_3Cl]$ does not catalyze this reaction, because				
		onger to Ir than to Rh onger to Rh than to Ir		nger to Ir than to Rh onger to Rh than to Ir	
Q.12	Among the given pH values, the O_2 binding efficiency of hemoglobin is maximum at				
	(A) 6.8	(B) 7.0	(C) 7.2	(D) 7.4	
Q.13	The intense red color of $[Fe(bpy)_3]^{2+}$ (bpy = 2,2'-bipyridine) is due to				
	(A) metal-to-ligan(C) <i>d-d</i> transition	d charge transfer (MLCT)	(B) ligand-to-metal charge transfer (LMCT)(D) inter-valence charge transfer (IVCT)		
Q.14	The compound with planar geometry is				
	(A) $N(t-Bu)_3$	(B) NPh ₃	(C) NF_3	(D) N(SiH ₃) ₃	
Q.15	The electrical conductivity of a metal				
	(B) decreases with(C) is independent	increasing temperature increasing temperature of temperature ory behaviour with tempera	ture (
Q.16	Which one of the	following statements is IN	CORRECT?		
	(B) Frenkel defect(C) Density of a set	is a cation vacancy and a c is an anion vacancy and a plid remains upchanged in c olid decreases in case of Sc	cation interstitial. case of Frenkel defe	ects.	
Q.17	The absolute conf	iguration of C2 and C3 in th	ne following compo	und is	
		Hı H ₃ C 4	о H О 3 ² 1 ОН Br H		
	(A) 2 <i>R</i> , 3 <i>S</i>	(B) 2 <i>S</i> , 3 <i>R</i>	(C) 2 <i>S</i> , 3 <i>S</i>	(D) 2 <i>R</i> , 3 <i>R</i>	

www.FirstRanker.com

Q.24 The mass spectrum of a dihalo compound shows peaks with relative intensities of 1:2:1 corresponding to M, M+2 and M+4 (M is the mass of the molecular ion), respectively. The compound is

Q.25 Reaction of benzaldehyde and *p*-methylbenzaldehyde under McMurry coupling conditions (TiCl₃ and LiAlH₄) gives a mixture of alkenes. The number of alkenes formed is

Q. 26 – Q. 55 carry two marks each.

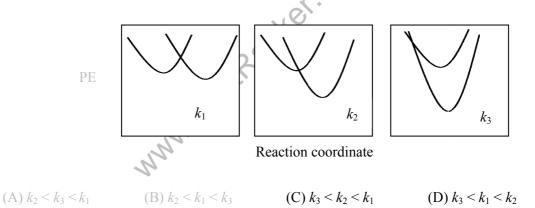
Ranker.<mark>com</mark>

- Q.26 The difference in the ground state energies (kJ/mol) of an electron in one-dimensional boxes of lengths 0.2 nm and 2 nm is _____
- Q.27 The mean ionic activity coefficient of 0.001 molal ZnSO₄ (aq) at 298 K according to the Debye-Hückel limiting law is (Debye-Hückel constant is 0.509 model^{-1/2})
- Q.28 The process given below follows the Langmondsorption isotherm.

$$A_2(g) \xrightarrow{k_1} 2 A_{ads}$$

If θ denotes the surface coverage and P denotes the pressure, the slope of the plot of $1/\theta$ versus $1/\sqrt{P}$ is

- (A) $1/(K_{eq})^2$ (B) $1/K_{eq}$ (C) $-1/K_{eq}$ (D) $1/(K_{eq})^{1/2}$
- Q.29 For a gas phase unimolecular reaction at temperature 298 K, with a pre-exponential factor of $2.17 \times 10^{13} \text{ s}^{-1}$, the entropy of activation (J K⁻¹ mol⁻¹) is
- Q.30 A liquid has vapor pressure of 2.02×10^3 N m⁻² at 293 K and heat of vaporization of 41 kJ mol⁻¹. The boiling point of the liquid (in Kelvin) is ______


www.FirstRanker.com

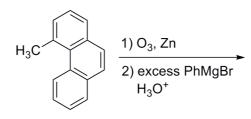
Q.31 The rotational partition function of a diatomic molecule with energy levels corresponding to J = 0and 1, is (where, ε is a constant)

(A) $1+e^{-2\varepsilon}$ (B) $1+3e^{-2\varepsilon}$ (C) $1+e^{-3\varepsilon}$ (D) $1+3e^{-3\varepsilon}$

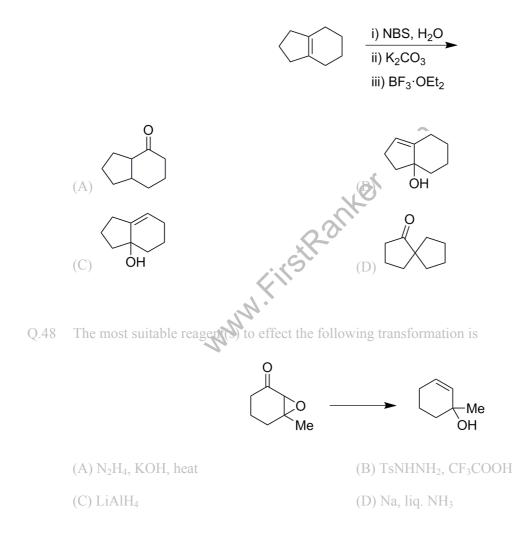
Ranker.<mark>com</mark>

- Q.32 The internal energy of an ideal gas follows the equation U = 3.5 PV + k, where k is a constant. The gas expands from an initial volume of 0.25 m³ to a final volume of 0.86 m³. If the initial pressure is 5 N m^{-2} , the change in internal energy (in Joules) is (given $PV^{1.3} = \text{constant}$)
- Q.33 The solubility product of AgBr(s) is 5×10^{-13} at 298 K. If the standard reduction potential of the half-cell, $E^0_{Ag|AgBr(s)|Br^-}$ is 0.07 V, the standard reduction potential, $E^0_{Ag^+|Ag}$ (in volts) is _____.
- Q.34 One mole of a substance is heated from 300 K to 400 K at constant pressure. The C_P of the substance is given by, C_P (J K⁻¹mol⁻¹) = 5 + 0.1 T. The change in entropy, in J K⁻¹mol⁻¹, of the substance is ______
- Q.35 The potential energy (PE) versus reaction coordinate diagrams for electron transfer reactions with rate constants k_1 , k_2 and k_3 , are given below. The increasing order of the rate constants is

- Q.36 The distance between two successive (110) planes in a simple cubic lattice with lattice parameter a' is
 - (A) $\sqrt{2} a$ (B) $\sqrt{3} a$ (C) $2\sqrt{2} a$ (D) $\frac{a}{\sqrt{2}}$


ATE 20	15	www.First	Ranker.com	www.FirstRanker.com		
Q.37	The percent transmittance of 8×10^{-5} M solution of KMnO ₄ is 39.8 when measured at 510 nm in cell of path length of 1 cm. The absorbance and the molar extinction coefficient (in M ⁻¹ cm ⁻¹) of this solution are, respectively,					
	(A) 0.30 and 4500	(B) 0.35 and 4800	(C) 0.4 and 5000	(D) 0.48 and 5200		
Q.38	The value of 'g' and the number of signals observed for the reference standard diphenylpicrylhydrazyl (DPPH), in the solid state ESR spectrum are, respectively,					
	(A) 2.0036 and 1	(B) 2.0036 and 3	(C) 2.2416 and 1	(D) 2.2416 and 3		
Q.39	Ammonolysis of S_2Cl_2 in an inert solvent gives					
	$(A) S_2 N_2$	(B) $S_2N_2Cl_2$	$(C) \; S_2 N_2 H_4$	(D) S_4N_4		
Q.40	The complexes $K_2[NiF_6]$ and $K_3[CoF_6]$ are					
	(A) both paramagnetic(B) both diamagnetic(C) paramagnetic and diamagnetic, respectively(D) diamagnetic and paramagnetic, respectively					
Q.41	The point group of IF ₇ is					
	(A) D _{6h}	(B) D _{5h}	(C) C ₆ 0	(D) C _{5v}		
Q.42	When one CO group TRUE ?	p is replaced by PPh ₃ in	$(CCO)_6]$, which one	e of the following statements		
	 (A) The Cr-C bond length increases and CO bond length decreases (B) The Cr-C bond length decreases and CO bond length decreases (C) The Cr-C bond length decreases and CO bond length increases (D) The Cr-C bond length increases and CO bond length increases 					
Q.43	Identify X in the reaction, $[Pt(NH_3)_4]^{2+} + 2 \text{ HCl} \rightarrow X$					
	(A) cis-[PtCl ₂ (NH ₃) ₂]	(B) <i>trans</i> -[PtCl ₂ (NF	[₃) ₂]		
	$(C) \left[PtCl(NH_3)_3 \right]^+$		(D) [PtCl ₃ (NH ₃)] ⁻			
Q.44	Identify the function of hemocyanin and the metal responsible for it.					
	(A) O_2 transport and (C) electron transport		(B) O_2 transport and (D) electron transpo			

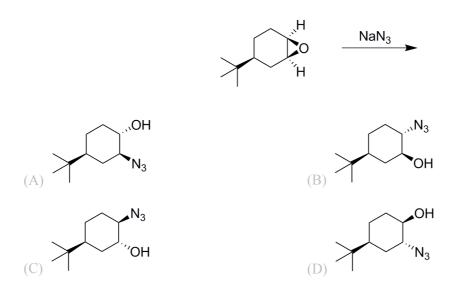
(C) electron transport and Fe (D) electron transport and Cu


Q.45 The limiting current (in μA) from the reduction of 3 × 10⁻⁴ M Pb²⁺, using a dropping mercury

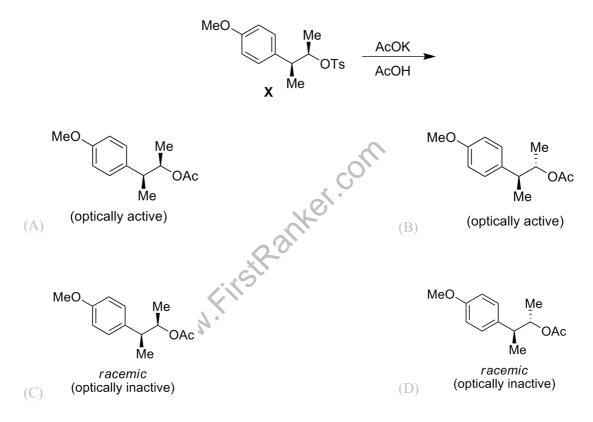
The limiting current (in μ A) from the reduction of 3 × 10⁻⁴ M Pb²⁺, using a dropping mercury electrode (DME) with characteristics, $m = 3.0 \text{ mg s}^{-1}$ and t = 3s, is (diffusion coefficient of Pb²⁺ = 1.2 × 10⁻⁵ cm² s⁻¹)

Q.46 The number of possible stereoisomers obtained in the following reaction is _____

Q.47 The major product formed in the following reaction is

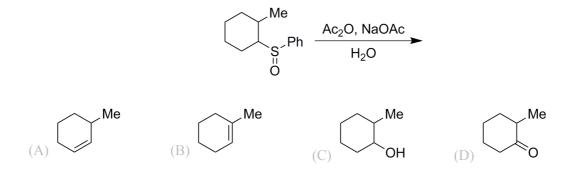


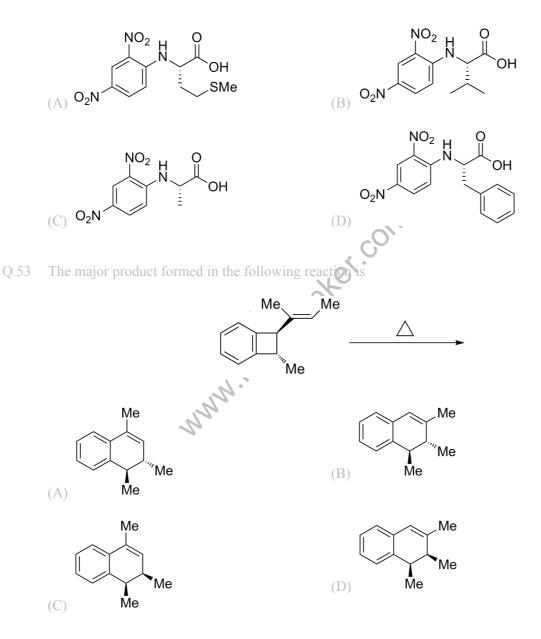
FirstRanker.com


www.FirstRanker.com

www.FirstRanker.com

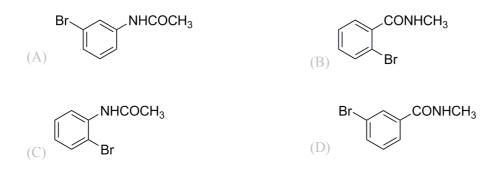
Q.49 The major product formed in the following reaction is


Q.50 Solvolysis of the optically active compound X gives, mainly

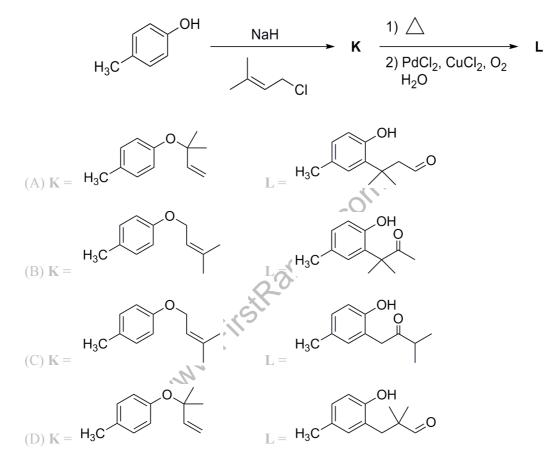

FirstRanker.com

www.FirstRanker.com

Q.51 The major product formed in the following reaction is



Q.52 The tetrapeptide, Ala-Val-Phe-Met, on reaction with Sanger's reagent, followed by hydrolysis gives



FirstRanker.com

Q.54 The Beckmann rearrangement of a bromoacetophenone oxime (C_8H_8BrNO) gives a major product having the following ¹H NMR (δ , ppm): 9.89 (s, 1H), 7.88 (s, 1H), 7.45 (d, 1H, J = 7.2 Hz), 7.17 (m, 1H), 7.12 (d, 1H, J = 7.0 Hz), 2.06 (s, 3H). The structure of the product is

Q.55 The major products, K and L formed in the following reactions are

END OF THE QUESTION PAPER