Q. 1 - Q. 25 carry one mark each.

Q. $1 \quad$ For $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, the determinant of $A^{T} A^{-1}$ is
(A) $\sec ^{2} x$
(B) $\cos 4 x$
(C) 1
(D) 0
Q. 2 The contour on the $x-y$ plane, where the partial derivative of $x^{2}+y^{2}$ with respect to y is equal to the partial derivative of $6 y+4 x$ with respect to x, is
(A) $y=2$
(B) $x=2$
(C) $x+y=4$
(D) $x-y=0$
Q. 3 If C is a circle of radius r with centre z_{0}, in the complex z-plane and if n is a non-zero integer, then $\oint_{C} \frac{d z}{\left(z-z_{0}\right)^{n+1}}$ equals
(A) $2 \pi n j$
(B) 0
(C) $\frac{n j}{2 \pi}$
(D) $2 \pi n$
Q. 4 Consider the function $g(t)=e^{-t} \sin (2 \pi t) u(t)$ where $u(t)$ is the unit step function. The area under $g(t)$ is \qquad .
Q. 5

The value of $\sum_{n=0}^{\infty} n\left(\frac{1}{2}\right)^{n}$ is \qquad .
Q. 6 For the circuit shown in the figure, the Thevenin equivalent voltage (in Volts) across terminals a-b is \qquad .

Q. 7 In the circuit shown, the voltage ∇_{X} (in Volts) is \qquad .

Q. 8 At very high frequencies, the peak output voltage V_{0} (in Volts) is \qquad .

Q. 9 Which one of the following processes is preferred to form the gate dielectric $\left(\mathrm{SiO}_{2}\right)$ of MOSFETs ?
(A) Sputtering
(B) Molecular beam epitaxy
(C) Wet oxidation
(D) Dry oxidation
Q. 10 If the base width in a bipolar junction transistor is doubled, which one of the following statements will be TRUE?
(A) Current gain will increase.
(B) Unity gain frequency will increase.
(C) Emitter-base junction capacitance will increase.
(D) Early Voltage will increase.
Q. 11 In the circuit shown in the figure, the BJT has a current gain (β) of 50 . For an emitter-base voltage $V_{E B}=600 \mathrm{mV}$, the emitter-collector voltage $V_{E C}$ (in Volts) is \qquad .

Q. 12 In the circuit shown using an ideal opamp, the 3-dB cut-off frequency (in Hz) is \qquad .

Q. 13 In the circuit shown, assume that diodes D_{1} and D_{2} are ideal. In the steady state condition, the average voltage V_{ab} (in Volts) across the $0.5 \mu \mathrm{~F}$ capacitor is \qquad .

Q. 14 The circuit shown consists of J-K flip-flops, each with an active low asynchronous reset ($\overline{R_{d}}$ input). The counter corresponding to this circuit is

(A) a modulo- 5 binary up counter
(B) a modulo-6 binary down counter
(C) a modulo- 5 binary down counter
(D) a modulo-6 binary up counter
Q. 15 In the circuit shown, diodes D_{1}, D_{2} and D_{3} are ideal, and the inputs E_{1}, E_{2} and E_{3} are " 0 V " for logic ' 0 ' and " 10 V " for logic ' 1 '. What logic gate does the circuit represent?

(A) 3-input OR gate
(B) 3-input NOR gate
(C) 3-input AND gate
(D) 3-input XOR gate
Q. 16 Which one of the following 8085 microprocessor programs correctly calculates the product of two 8 -bit numbers stored in registers B and C ?
(A)
MVI A, 00H
JNZ LOOP
CMP C
LOOP DCR B HLT
(C)
MVI A, 00H
DCR B
JNZ LOOP HLT
(B)
(D)

	MVI A, 00H
	ADD C
	JNZ LOOP
LOOP	INR B
	HLT

MVI A, 00H
CMP C
LOOP DCR B
JNZ LOOP
HLT
ADD C
JNZLOOP
HLT
Q. 17 The impulse response of an LTI system can be obtained by
(A) differentiating the unit ramp response
(B) differentiating the unit step response
(C) integrating the unit ramp response
(D) integrating the unit step response
Q. 18 Consider a four-point moving average filter defined by the equation $y[n]=\sum_{i=0}^{3} \alpha_{i} x[n-i]$. The condition on the filter coefficients that results in a null at zero frequency is
(A) $\alpha_{1}=\alpha_{2}=0 ; \quad \alpha_{0}=-\alpha_{3}$
(B) $\alpha_{1}=\alpha_{2}=1 ; \quad \alpha_{0}=-\alpha_{3}$
(C) $\alpha_{0}=\alpha_{3}=0 ; \quad \alpha_{1}=\alpha_{2}$
(D) $\alpha_{1}=\alpha_{2}=0 ; ~ \alpha_{0}=\alpha_{3}$
Q. 19 Consider the Bode plot shown in the figure. Assume that all the poles and zeros are real-valued.

The value of $\mathbf{f}_{\mathbf{H}}-\mathbf{f}_{\mathrm{L}}($ in Hz$)$ is \qquad .
Q. 20 The phase margin (in degrees) of the system $G(s)=\frac{10}{s(s+10)}$ is \qquad .
Q. 21 The transfer function of a first-order controller is given as

$$
G_{C}(s)=\frac{K(s+a)}{s+b}
$$

where K, a and b are positive real numbers. The condition for this controller to act as a phase lead compensator is
(A) $a<b$
(B) $a>b$
(C) $K<a b$
(D) $K>a b$
Q. 22 The modulation scheme commonly used for transmission from GSM mobile terminals is
(A) 4-QAM
(B) $16-\mathrm{PSK}$
(C) Walsh-Hadamard orthogonal codes
(D) Gaussian Minimum Shift Keying (GMSK)
Q. 23 A message signal $m(t)=A_{m} \sin \left(2 \pi f_{m} t\right)$ is used to modulate the phase of a carrier $A_{c} \cos \left(2 \pi f_{c} t\right)$ to get the modulated signal $y(t)=A_{c} \cos \left(2 \pi f_{c} t+m(t)\right)$. The bandwidth of $y(t)$
(A) depends on A_{m} but not on f_{m} 。
(B) depends on f_{m} but not on A_{m}
(C) depends on both A_{m} and f_{m}
(D) does not depend on A_{m} or f_{m}
Q. 24 The directivity of an antenna array can be increased by adding more antenna elements, as a larger number of elements
(A) improves the radiation efficiency
(B) increases the effective area of the antenna
(C) results in a better impedance matching
(D) allows more power to be transmitted by the antenna
Q. 25 A coaxial cable is made of two brass conductors. The spacing between the conductors is filled with Teflon $\left(\varepsilon_{r}^{\prime}=2.1, \tan \delta=0\right)$. Which one of the following circuits can represent the lumped element model of a small piece of this cable having length Δz ?

Q. 26 - Q. 55 carry two marks each.

Q. 26 The Newton-Raphson method is used to solve the equation $f(x)=x^{3}-5 x^{2}+6 x-8=0$. Taking the initial guess as $x=5$, the solution obtained at the end of the first iteration is \qquad .
Q. 27 A fair die with faces $\{1,2,3,4,5,6\}$ is thrown repeatedly till ' 3 ' is observed for the first time. Let X denote the number of times the die is thrown. The expected value of X is \qquad -
Q. 28 Consider the differential equation

$$
\frac{d^{2} x(t)}{d t^{2}}+3 \frac{d x(t)}{d t}+2 x(t)=0
$$

Given $x(0)=20$ and $x(1)=10 / e$, where $e=2.718$, the value of $x(2)$ is \qquad .
Q. 29 A vector field $\mathbf{D}=2 \rho^{2} \mathbf{a}_{\rho}+z \mathbf{a}_{z}$ exists inside a cylindrical region enclosed by the surfaces $\rho=1, z=0$ and $z=5$. Let S be the surface bounding this cylindrical region. The surface integral of this field on $S\left(\oiint_{S}\right.$ D. ds $)$ is \qquad .
Q. 30 In the circuit shown, the current I flowing through the 50Ω resistor will be zero if the value of capacitor $\mathrm{C}($ in $\mu \mathrm{F}$) is \qquad .

Q. 31 The ABCD parameters of the following 2-port network are

(A) $\left[\begin{array}{cc}3.5+j 2 & 20.5 \\ 20.5 & 3.5-j 2\end{array}\right]$
(B) $\left[\begin{array}{cc}3.5+j 2 & 30.5 \\ 0.5 & 3.5-j 2\end{array}\right]$
(C) $\left[\begin{array}{cc}10 & 2+j 0 \\ 2+j 0 & 10\end{array}\right]$
(D) $\left[\begin{array}{cc}7+j 4 & 0.5 \\ 30.5 & 7-j 4\end{array}\right]$
Q. 32 A network is described by the state model as

$$
\begin{aligned}
\dot{x}_{1} & =2 x_{1}-x_{2}+3 u \\
\dot{x}_{2} & =-4 x_{2}-u \\
y & =3 x_{1}-2 x_{2}
\end{aligned}
$$

The transfer function $H(S)\left(=\frac{Y(s)}{U(s)}\right)$ is
(A) $\frac{11 s+35}{(s-2)(s+4)}$
(B) $\frac{11 s-35}{(s-2)(s+4)}$
(C) $\frac{11 s+38}{(s-2)(s+4)}$
(D) $\frac{11 s-38}{(s-2)(s+4)}$
Q. 33 The electric field profile in the depletion region of a p-n junction in equilibrium is shown in the figure. Which one of the following statements is NOT TRUE?

(A) The left side of the junction is n-type and the right side is p -type
(B) Both the n-type and p-type depletion regions are uniformly doped
(C) The potential difference across the depletion region is 700 mV
(D) If the p -type region has a doping concentration of $10^{15} \mathrm{~cm}^{-3}$, then the doping concentration in the n-type region will be $10^{16} \mathrm{~cm}^{-3}$
Q. 34 The current in an enhancement mode NMOS transistor biased in saturation mode was measured to be 1 mA at a drain-source voltage of 5 V . When the drain-source voltage was increased to 6 V while keeping gate-source voltage same, the drain current increased to 1.02 mA . Assume that drain to source saturation voltage is much smaller than the applied drain-source voltage. The channel length modulation parameter λ (in V^{-1}) is \qquad .
Q. 35 An npn BJT having reverse saturation current $I_{S}=10^{-15} \mathrm{~A}$ is biased in the forward active region with $V_{B E}=700 \mathrm{mV}$. The thermal voltage $\left(V_{T}\right)$ is 25 mV and the current gain (β) may vary from 50 to 150 due to manufacturing variations. The maximum emitter current (in $\mu \mathrm{A}$) is \qquad .
Q. 36 A three bit pseudo random number generator is shown. Initially the value of output $\boldsymbol{Y} \equiv Y_{2} Y_{1} Y_{0}$ is set to 111. The value of output \mathbf{Y} after three clock cycles is

(A) 000
(B) 001
(C) 010
(D) 100
Q. 37 A universal logic gate can implement any Boolean function by connecting sufficient number of them appropriately. Three gates are shown.
 $F 1=X+Y$
Gate 1

Gate 2

Gate 3

Which one of the following statements is TRUE?
(A) Gate 1 is a universal gate.
(B) Gate 2 is a universal gate.
(C) Gate 3 is a universal gate.
(D) None of the gates shown is a universal gate.
Q. 38 An SR latch is implemented using TTL gates as shown in the figure. The set and reset pulse inputs are provided using the push-button switches. It is observed that the circuit fails to work as desired. The SR latch can be made functional by changing

(A) NOR gates to NAND gates
(B) inverters to buffers
(C) NOR gates to NAND gates and inverters to buffers)
(D) 5 V to ground
Q. 39 In the circuit shown, assume that the opamp is ideal. If the gain $\left(v_{0} / v_{\text {in }}\right)$ is -12 , the value of $R($ in $k \Omega)$ is \qquad .

Q. 40 In the circuit shown, both the enhancement mode NMOS transistors have the following characteristics: $k_{n}=\mu_{n} C_{o x}(W / L)=1 \mathrm{~mA} / V^{2} ; V_{T N}=1 V$. Assume that the channel length modulation parameter λ is zero and body is shorted to source. The minimum supply voltage $V_{D D}$ (in volts) needed to ensure that transistor M_{1} operates in saturation mode of operation is \qquad .

Q. 41 In the circuit shown, assume that the diodes D_{1} and D_{2} are ideal. The average value of voltage $V_{a b}$ (in Volts), across terminals ' \mathbf{a} ' and ' \mathbf{b} ' is \qquad .

Q. 42 Suppose $x[n]$ is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at $z= \pm 2 j$. Which one of the following statements is TRUE for the signal $x[n]$?
(A) It is a finite duration signal.
(B) It is a causal signal.
(C) It is a non-causal signal.
(D) It is a periodic signal.
Q. 43 A realization of a stable discrete time system is shown in the figure. If the system is excited by a unit step sequence input $x[n]$, the response $y[n]$ is

(A) $4\left(-\frac{1}{3}\right)^{n} u[n]-5\left(-\frac{2}{3}\right)^{n} u[n]$
(B) $5\left(-\frac{2}{3}\right)^{n} u[n]-3\left(-\frac{1}{3}\right)^{n} u[n]$
(C) $5\left(\frac{1}{3}\right)^{n} u[n]-5\left(\frac{2}{3}\right)^{n} u[n]$
(D) $5\left(\frac{2}{3}\right)^{n} u[n]-5\left(\frac{1}{3}\right)^{n} u[n]$
Q. 44 Let $\tilde{x}[n]=1+\cos \left(\frac{\pi n}{8}\right)$ be a periodic signal with period 16. Its DFS coefficients are defined by $a_{k}=\frac{1}{16} \sum_{n=0}^{15} \tilde{x}[n] \exp \left(-j \frac{\pi}{8} k n\right)$ for all k. The value of the coefficient a_{31} is \qquad .
Q. 45 Consider a continuous-time signal defined as

$$
x(t)=\left(\frac{\sin (\pi t / 2)}{(\pi t / 2)}\right) * \sum_{n=-\infty}^{\infty} \delta(t-10 n)
$$

where ' $*$ ' denotes the convolution operation and t is in seconds. The Nyquist sampling rate (in samples $/$ sec) for $x(t)$ is \qquad .
Q. 46 The position control of a DC seryo-motor is given in the figure. The values of the parameters are $K_{T}=1 \mathrm{~N}-\mathrm{m} / \mathrm{A}, R_{a}=1 \Omega, L_{a}=0.1 \mathrm{H}, J=5 \mathrm{~kg}-\mathrm{m}^{2}, B=1 \mathrm{~N}-\mathrm{m} /(\mathrm{rad} / \mathrm{sec})$ and $K_{b}=1 \mathrm{~V} /(\mathrm{rad} / \mathrm{sec})$. The steady-state position response (in radians) due to unit impulse disturbance torque T_{d} is
\qquad .

Q. 47 For the system shown in the figure, $s=-2.75$ lies on the root locus if K is \qquad .

Q. 48 The characteristic equation of an LTI system is given by $F(s)=s^{5}+2 s^{4}+3 s^{3}+6 s^{2}-4 s-8=0$. The number of roots that lie strictly in the left half s-plane is \qquad -.
Q. 49 Two sequences $x_{1}[n]$ and $x_{2}[n]$ have the same energy. Suppose $x_{1}[n]=\alpha 0.5^{n} u[n]$, where α is a positive real number and $u[n]$ is the unit step sequence. Assume

$$
x_{2}[n]= \begin{cases}\sqrt{1.5} & \text { for } n=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Then the value of α is \qquad $-$
Q. 50 The variance of the random variable X with probability density function $f(x)=\frac{1}{2}|x| e^{-|x|}$ is
\qquad .
Q. 51 The complex envelope of the bandpass signal $x(t)=-\sqrt{2}\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right) \sin \left(\pi t-\frac{\pi}{4}\right)$, centered about $f=\frac{1}{2} \mathrm{~Hz}$, is
(A) $\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right) e^{j \frac{\pi}{4}}$
(B) $\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right) e^{-j \frac{\pi}{4}}$
(C) $\sqrt{2}\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right) e^{j \frac{\pi}{4}}$
(D) $\sqrt{2}\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right) e^{-j \frac{\pi}{4}}$
Q. 52 A random binary wave $y(t)$ is given by

$$
y(t)=\sum_{n=-\infty}^{\infty} X_{n} p(t-n T-\phi)
$$

where $p(t)=u(t)-u(t-T), u(t)$ is the unit step function and ϕ is an independent random variable with uniform distribution in [0,T]. The sequence $\left\{X_{n}\right\}$ consists of independent and identically distributed binary valued random variables with $P\left\{X_{n}=+1\right\}=P\left\{X_{n}=-1\right\}=0.5$ for each n.

The value of the autocorrelation $R_{y y}\left(\frac{3 T}{4}\right) \triangleq E\left[y(t) y\left(t-\frac{3 T}{4}\right)\right]$ equals \qquad .
Q. 53 Consider the 3 m long lossless air-filled transmission line shown in the figure. It has a characteristic impedance of $120 \pi \Omega$, is terminated by a short circuit, and is excited with a frequency of 37.5 MHz . What is the nature of the input impedance $\left(\mathrm{Z}_{\mathrm{in}}\right)$?

(A) Open
(B) Short
(C) Inductive
(D) Capacitive
Q. 54 A 200 m long transmission line having parameters shown in the figure is terminated into a load R_{L}. The line is connected to a 400 V source having source resistance R_{S} through a switch, which is closed at $\mathrm{t}=0$. The transient response of the circuit at the input of the line $(\mathrm{z}=0)$ is also drawn in the figure. The value of R_{L} (in Ω) is \qquad

Q. 55 A coaxial capacitor of inner radius 1 mm and outer radius 5 mm has a capacitance per unit length of $172 \mathrm{pF} / \mathrm{m}$. If the ratio of outer radius to inner radius is doubled, the capacitance per unit length (in pF / m) is \qquad .

END OF THE QUESTION PAPER

