www.FirstRankericom

List of Symbols, Notations and Data

- B(n, p): Binomial distribution with *n* trials and success probability *p*; $n \in \{1, 2, ...\}$ and $p \in (0, 1)$
- U(a, b): Uniform distribution on the interval (a, b), $-\infty < a < b < \infty$

Ranker.<mark>com</mark>

- $N(\mu, \sigma^2)$: Normal distribution with mean μ and variance σ^2 , $\mu \in (-\infty, \infty)$, $\sigma > 0$
- P(A): Probability of the event A
- Poisson(λ): Poisson distribution with mean λ , $\lambda > 0$
- E(X): Expected value (mean) of the random variable X
- If $Z \sim N(0,1)$, then $P(Z \le 1.96) = 0.975$ and $P(Z \le 0.54) = 0.7054$
- \mathbb{Z} : Set of integers
- $\mathbb{Q}:$ Set of rational numbers
- $\mathbb{R}:$ Set of real numbers
- $\mathbb{C}:$ Set of complex numbers
- \mathbb{Z}_n : The cyclic group of order n
- $\mathbb{F}[x]$: Polynomial ring over the field \mathbb{F}
- C[0, 1]: Set of all real valued continuous functions on the interval [0, 1]
- $C^{1}[0, 1]$: Set of all real valued continuously differentiable functions on the interval [0, 1]
- ℓ_2 : Normed space of all square-summable real sequences
- $L^{2}[0, 1]$: Space of all square-Lebesgue integrable real valued functions on the interval [0, 1]
- $(C[0,1], \| \|_2)$: The space C[0,1] with $\|f\|_2 = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$
- $(C[0,1], \| \|_{\infty})$: The space C[0,1] with $\|f\|_{\infty} = \sup\{|f(x)|: x \in [0,1]\}$
- V^{\perp} : The orthogonal complement of V in an inner product space
- \mathbb{R}^n : *n*-dimensional Euclidean space

Usual metric d on \mathbb{R}^n is given by $d((x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)) = (\sum_{i=1}^n (x_i - y_i)^2)^{1/2}$

- I_n : The $n \times n$ identity matrix (I: the identity matrix when order is NOT specified)
- o(g): The order of the element g of a group

www.FirstRanker.com

Q. 1 – Q. 25 carry one mark each.

GATE 2015

Q.1 Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map defined by T(x, y, z, w) = (x + z, 2x + y + 3z, 2y + 2z, w).

Then the rank of *T* is equal to _____

Ranker.<mark>com</mark>

Q.2 Let *M* be a 3×3 matrix and suppose that 1, 2 and 3 are the eigenvalues of *M*. If

$$M^{-1} = \frac{M^2}{\alpha} - M + \frac{11}{\alpha}I_3$$

for some scalar $\alpha \neq 0$, then α is equal to _____

- Q.3 Let *M* be a 3 × 3 singular matrix and suppose that 2 and 3 are eigenvalues of *M*. Then the number of linearly independent eigenvectors of $M^3 + 2M + I_3$ is equal to ______
- Q.4 Let *M* be a 3 × 3 matrix such that $M\begin{pmatrix} -2\\1\\0 \end{pmatrix} = \begin{pmatrix} 6\\-3\\0 \end{pmatrix}$ and suppose that $M^3\begin{pmatrix} 1\\-1/2\\0 \end{pmatrix} = \begin{pmatrix} \alpha\\\beta\\\gamma \end{pmatrix}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$. Then $|\alpha|$ is equal to _____
- Q.5 Let $f: [0, \infty) \to \mathbb{R}$ be defined by

$$f(x) = \int_0^x \sin^2(t^2) dt.$$

Then the function f is

- (A) uniformly continuous on [0, 1) but NOT on $(0, \infty)$
- (B) uniformly continuous on $(0, \infty)$ but NOT on [0, 1)
- (C) uniformly continuous on both [0, 1) and $(0, \infty)$
- (D) neither uniformly continuous on [0, 1) nor uniformly continuous on $(0, \infty)$

Q.6
Consider the power series
$$\sum_{n=0}^{\infty} a_n z^n$$
, where $a_n = \begin{cases} \frac{1}{3^n} & \text{if } n \text{ is even} \\ \frac{1}{5^n} & \text{if } n \text{ is odd.} \end{cases}$

The radius of convergence of the series is equal to _____

Q.7 Let
$$C = \{ z \in \mathbb{C} : |z - i| = 2 \}$$
. Then $\frac{1}{2\pi} \oint_C \frac{z^2 - 4}{z^2 + 4} dz$ is equal to _____

Q.8 Let
$$X \sim B(5, \frac{1}{2})$$
 and $Y \sim U(0, 1)$. Then $\frac{P(X+Y \le 2)}{P(X+Y \ge 5)}$ is equal to ______

Q.9 Let the random variable *X* have the distribution function

Ranker.<mark>com</mark>

GATE 2015

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{x}{2} & \text{if } 0 \le x < 1\\ \frac{3}{5} & \text{if } 1 \le x < 2\\ \frac{1}{2} + \frac{x}{8} & \text{if } 2 \le x < 3\\ 1 & \text{if } x \ge 3. \end{cases}$$

al to

Then $P(2 \le X < 4)$ is equal to _

Q.10 Let *X* be a random variable having the distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4} & \text{if } 0 \le x < 1\\ \frac{1}{3} & \text{if } 1 \le x < 2\\ \frac{1}{2} & \text{if } 2 \le x < \frac{11}{3}\\ 1 & \text{if } x \ge \frac{11}{3}. \end{cases}$$

Then E(X) is equal to _____

Q.11 In an experiment, a fair die is rolled until two sixes are obtained in succession. The probability that the experiment will end in the fifth trial is equal to

(A)
$$\frac{125}{6^5}$$
 (B) $\frac{150}{6^5}$ (C) $\frac{175}{6^5}$ (D) $\frac{200}{6^5}$

Q.12 Let $x_1 = 2.2$, $x_2 = 4.3$, $x_3 = 3.1$, $x_4 = 4.5$, $x_5 = 1.1$ and $x_6 = 5.7$ be the observed values of a random sample of size 6 from a $U(\theta - 1, \theta + 4)$ distribution, where $\theta \in (0, \infty)$ is unknown. Then a maximum likelihood estimate of θ is equal to

(A) 1.8 (B) 2.3 (C) 3.1 (D) 3.6

Q.13 Let $\Omega = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ be the open unit disc in \mathbb{R}^2 with boundary $\partial \Omega$. If u(x, y) is the solution of the Dirichlet problem

$$u_{xx} + u_{yy} = 0 \quad \text{in } \Omega$$

$$u(x, y) = 1 - 2 y^2 \quad \text{on } \partial\Omega,$$
then $u\left(\frac{1}{2}, 0\right)$ is equal to
(A) -1
(B) $\frac{-1}{4}$
(C) $\frac{1}{4}$
(D) 1

Q.14 Let $c \in \mathbb{Z}_3$ be such that $\frac{\mathbb{Z}_3[X]}{\langle X^3 + c X + 1 \rangle}$ is a field. Then *c* is equal to ______

Q.15 Let $V = C^1[0, 1]$, $X = (C[0, 1], \| \|_{\infty})$ and $Y = (C[0, 1], \| \|_2)$. Then V is

- (A) dense in X but NOT in Y
- (B) dense in Y but NOT in X
- (C) dense in both X and Y
- (D) neither dense in *X* nor dense in *Y*

Ranker.<mark>co</mark>m

Q.16 Let $T : (C[0,1], \| \|_{\infty}) \to \mathbb{R}$ be defined by $T(f) = \int_0^1 2x f(x) dx$ for all $f \in C[0,1]$. Then $\|T\|$ is equal to ______

Q.17 Let τ_1 be the usual topology on \mathbb{R} . Let τ_2 be the topology on \mathbb{R} generated by $\mathcal{B} = \{[a, b) \subset \mathbb{R} : -\infty < a < b < \infty\}$. Then the set $\{x \in \mathbb{R} : 4 \sin^2 x \le 1\} \cup \{\frac{\pi}{2}\}$ is

- (A) closed in (\mathbb{R}, τ_1) but NOT in (\mathbb{R}, τ_2)
- (B) closed in (\mathbb{R}, τ_2) but NOT in (\mathbb{R}, τ_1)
- (C) closed in both (\mathbb{R}, τ_1) and (\mathbb{R}, τ_2)
- (D) neither closed in (\mathbb{R}, τ_1) nor closed in (\mathbb{R}, τ_2)
- Q.18 Let X be a connected topological space such that there exists a non-constant continuous function $f: X \to \mathbb{R}$, where \mathbb{R} is equipped with the usual topology. Let $f(X) = \{f(x) : x \in X\}$. Then

Her.cc

- (A) *X* is countable but f(X) is uncountable
- (B) f(X) is countable but X is uncountable
- (C) both f(X) and X are countable
- (D) both f(X) and X are uncountable
- Q.19 Let d_1 and d_2 denote the usual metric and the discrete metric on \mathbb{R} , respectively. Let $f : (\mathbb{R}, d_1) \to (\mathbb{R}, d_2)$ be defined by $f(x) = x, x \in \mathbb{R}$. Then
 - (A) f is continuous but f^{-1} is NOT continuous (B) f^{-1} is continuous but f is NOT continuous (C) both f and f^{-1} are continuous (D) neither f nor f^{-1} is continuous
- Q.20 If the trapezoidal rule with single interval [0, 1] is exact for approximating the integral $\int_0^1 (x^3 c x^2) dx$, then the value of *c* is equal to _____
- Q.21 Suppose that the Newton-Raphson method is applied to the equation $2x^2 + 1 e^{x^2} = 0$ with an initial approximation x_0 sufficiently close to zero. Then, for the root x = 0, the order of convergence of the method is equal to _____

- Q.22 The minimum possible order of a homogeneous linear ordinary differential equation with real constant coefficients having $x^2 \sin(x)$ as a solution is equal to _____
- Q.23 The Lagrangian of a system in terms of polar coordinates (r, θ) is given by

anker.com

$$L = \frac{1}{2} m \dot{r}^{2} + \frac{1}{2} m \left(\dot{r}^{2} + r^{2} \dot{\theta}^{2} \right) - m g r \left(1 - \cos(\theta) \right)$$

where m is the mass, g is the acceleration due to gravity and \dot{s} denotes the derivative of s with respect to time. Then the equations of motion are

- (A) $2\ddot{r} = r\dot{\theta}^2 g(1 \cos(\theta)), \ \frac{d}{dt}(r^2\dot{\theta}) = -gr\sin(\theta)$
- (B) $2\ddot{r} = r\dot{\theta}^2 + g(1 \cos(\theta)), \ \frac{d}{dt}(r^2\dot{\theta}) = -gr\sin(\theta)$
- (C) $2\ddot{r} = r\dot{\theta}^2 g(1 \cos(\theta)), \quad \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$
- (D) $2\ddot{r} = r\dot{\theta}^2 + g(1 \cos(\theta)), \ \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$

Q.24 If
$$y(x)$$
 satisfies the initial value problem
 $(x^2 + y)dx = x dy, \quad y(1) = 2,$
then $y(2)$ is equal to _____

Q.25 It is known that Bessel functions $J_n(x)$, for $n \ge 0$, satisfy the identity $e^{\frac{x}{2}(t-\frac{1}{t})} = J_0(x) + \sum_{n=1}^{\infty} J_n(x) \left(t^n + \frac{(-1)^n}{t^n} \right)$ for all t > 0 and $x \in \mathbb{R}$. The value of $J_0\left(\frac{\pi}{3}\right) + 2\sum_{n=1}^{\infty} J_{2n}\left(\frac{\pi}{3}\right)$ is equal to ______

Q. 26 – Q. 55 carry two marks each.

Q.26 Let X and Y be two random variables having the joint probability density function

$$f(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Then the conditional probability
$$P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$$
 is equal to
(A) $\frac{5}{9}$ (B) $\frac{2}{3}$ (C) $\frac{7}{9}$ (D) $\frac{8}{9}$

Q.27 Let $\Omega = (0,1]$ be the sample space and let $P(\cdot)$ be a probability function defined by

$$P((0,x]) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x < \frac{1}{2} \\ x & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Then $P\left(\left\{\frac{1}{2}\right\}\right)$ is equal to _____

Let X_1, X_2 and X_3 be independent and identically distributed random variables with $E(X_1) = 0$ and $E(X_1^2) = \frac{15}{4}$. If $\psi : (0, \infty) \to (0, \infty)$ is defined through the conditional expectation Q.28 $\psi(t) = E(X_1^2 \mid X_1^2 + X_2^2 + X_3^2 = t), \ t > 0 ,$

then $E(\psi((X_1 + X_2)^2))$ is equal to _____

Ranker.<mark>com</mark>

- Let $X \sim \text{Poisson}(\lambda)$, where $\lambda > 0$ is unknown. If $\delta(X)$ is the unbiased estimator of Q.29 $g(\lambda) = e^{-\lambda}(3\lambda^2 + 2\lambda + 1)$, then $\sum_{k=0}^{\infty} \delta(k)$ is equal to _____
- Let $X_1, ..., X_n$ be a random sample from $N(\mu, 1)$ distribution, where $\mu \in \{0, \frac{1}{2}\}$. For testing the null Q.30 hypothesis $H_0: \mu = 0$ against the alternative hypothesis $H_1: \mu = \frac{1}{2}$, consider the critical region $R = \left\{ (x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i > c \right\},\$

where c is some real constant. If the critical region R has size 0.025 and power 0.7054, then the value of the sample size *n* is equal to _

- Q.31 Let X and Y be independently distributed central chi-squared random variables with degrees of freedom $m (\geq 3)$ and $n (\geq 3)$, respectively. If $E\left(\frac{X}{Y}\right) = 3$ and m + n = 14, then $E\left(\frac{Y}{X}\right)$ is equal to
 - (C) $\frac{4}{7}$ (A) $\frac{2}{7}$ (B) $\frac{3}{7}$ (D) $\frac{5}{7}$

Let X_1, X_2, \dots be a sequence of independent and identically distributed random variables with Q.32 $P(X_1 = 1) = \frac{1}{4}$ and $P(X_1 = 2) = \frac{3}{4}$. If $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, for n = 1, 2, ..., then $\lim_{n \to \infty} P(\overline{X}_n \le 1.8)$ is equal to ______

Q.33 Let $u(x, y) = 2f(y)\cos(x - 2y)$, $(x, y) \in \mathbb{R}^2$, be a solution of the initial value problem

$$2u_x + u_y = u$$
$$u(x,0) = \cos(x).$$

1.

Then f(1) is equal to

(B) $\frac{e}{2}$ (A) $\frac{1}{2}$ (C) e (D) $\frac{3e}{2}$

Let $u(x,t), x \in \mathbb{R}, t \ge 0$, be the solution of the initial value problem Q.34

$$u_{tt} = u_{xx}$$
$$u(x, 0) = x$$
$$u_t(x, 0) = 1.$$
Then $u(2,2)$ is equal to _____

Q.35 Let $W = \text{Span}\left\{\frac{1}{\sqrt{2}}(0,0,1,1), \frac{1}{\sqrt{2}}(1,-1,0,0)\right\}$ be a subspace of the Euclidean space \mathbb{R}^4 . Then the square of the distance from the point (1,1,1,1) to the subspace W is equal to _____

Q.36 Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map such that the null space of T is $\{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ and the rank of $(T - 4 I_4)$ is 3. If the minimal polynomial of T is $x(x - 4)^{\alpha}$, then α is equal to _____

Q.37 Let *M* be an invertible Hermitian matrix and let $x, y \in \mathbb{R}$ be such that $x^2 < 4y$. Then

(A) both $M^2 + x M + y I$ and $M^2 - x M + y I$ are singular

Ranker.<mark>com</mark>

- (B) $M^2 + x M + y I$ is singular but $M^2 x M + y I$ is non-singular
- (C) $M^2 + xM + yI$ is non-singular but $M^2 xM + yI$ is singular
- (D) both $M^2 + x M + y I$ and $M^2 x M + y I$ are non-singular
- Q.38 Let $G = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\}$ with o(x) = 4, o(y) = 2 and $xy = yx^3$. Then the number of elements in the center of the group G is equal to

(A) 1 (B) 2 (C) 4 (D) 8

Q.39 The number of ring homomorphisms from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to \mathbb{Z}_4 is equal to _____

Q.40 Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in $\mathbb{Q}[x]$. Then, over \mathbb{Q} ,

- (A) p(x) and q(x) are both irreducible
- (B) p(x) is reducible but q(x) is irreducible
- (C) p(x) is irreducible but q(x) is reducible
- (D) p(x) and q(x) are both reducible
- Q.41 Consider the linear programming problem Maximize 3 x + 9 y, subject to 2

subject to $2y - x \le 2$ $3y - x \ge 0$ $2x + 3y \le 10$ $x, y \ge 0.$

Then the maximum value of the objective function is equal to _____

- Q.42 Let $S = \{ (x, \sin \frac{1}{x}) : 0 < x \le 1 \}$ and $T = S \cup \{ (0,0) \}$. Under the usual metric on \mathbb{R}^2 ,
 - (A) S is closed but T is NOT closed
 - (B) T is closed but S is NOT closed
 - (C) both S and T are closed
 - (D) neither S nor T is closed

Q.43 Let
$$H = \left\{ (x_n) \in \ell_2 : \sum_{n=1}^{\infty} \frac{x_n}{n} = 1 \right\}$$
. Then H

anker.<mark>com</mark>

- (A) is bounded
- (C) is a subspace

(B) is closed

(D) has an interior point

Let V be a closed subspace of $L^2[0,1]$ and let $f, g \in L^2[0,1]$ be given by f(x) = x and 0.44 $g(x) = x^2$. If $V^{\perp} = \text{Span} \{f\}$ and Pg is the orthogonal projection of g on V, then $(g - Pg)(x), x \in [0, 1],$ is (C) $\frac{3}{4}x^2$ (B) $\frac{1}{4}x$ (D) $\frac{1}{4}x^2$ (A) $\frac{3}{4}x$

- Let p(x) be the polynomial of degree at most 3 that passes through the points (-2, 12), (-1, 1),Q.45 (0,2) and (2, -8). Then the coefficient of x^3 in p(x) is equal to _____
- If, for some $\alpha, \beta \in \mathbb{R}$, the integration formula 0.46 $\int_0^2 p(x)dx = p(\alpha) + p(\beta)$ holds for all polynomials p(x) of degree at most 3, then the value of $3(\alpha - \beta)^2$ is equal to _____

Let y(t) be a continuous function on $[0,\infty)$ whose Laplace transform exists. If y(t) satisfies Q.47 $\int_0^t (1 - \cos(t - \tau)) y(\tau) d\tau = t^4,$

then y(1) is equal to

- $y(1) = \alpha, y'(1) = 6.$ Consider the initial value problem $x^2y'' - 6y = 0$, If $y(x) \to 0$ as $x \to 0^+$, then α is equal to Q.48
- Define $f_1, f_2: [0,1] \to \mathbb{R}$ by $f_1(x) = \sum_{n=1}^{\infty} \frac{x \sin(n^2 x)}{n^2}$ and $f_2(x) = \sum_{n=1}^{\infty} x^2 (1-x^2)^{n-1}$. Q.49

Then

- (A) f_1 is continuous but f_2 is NOT continuous
- (B) f_2 is continuous but f_1 is NOT continuous
- (C) both f_1 and f_2 are continuous
- (D) neither f_1 nor f_2 is continuous
- Consider the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and the unit normal vector Q.50 $\hat{n} = (x, y, z)$ at each point (x, y, z) on S. The value of the surface integral

$$\iint_{S} \left\{ \left(\frac{2x}{\pi} + \sin(y^{2}) \right) x + \left(e^{z} - \frac{y}{\pi} \right) y + \left(\frac{2z}{\pi} + \sin^{2} y \right) z \right\} d\sigma$$

is equal to _____

Q.51 Let $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 1000, 1 \le y \le 1000\}$. Define

Ranker.<mark>co</mark>m

$$f(x,y) = \frac{x y}{2} + \frac{500}{x} + \frac{500}{y}.$$

Then the minimum value of f on D is equal to _____

Q.52 Let $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$. Then there exists a non-constant analytic function f on \mathbb{D} such that for all n = 2, 3, 4, ...

(A)
$$f\left(\frac{\sqrt{-1}}{n}\right) = 0$$

(B) $f\left(\frac{1}{n}\right) = 0$
(C) $f\left(1 - \frac{1}{n}\right) = 0$
(D) $f\left(\frac{1}{2} - \frac{1}{n}\right) = 0$

- Q.53 Let $\sum_{n=-\infty}^{\infty} a_n z^n$ be the Laurent series expansion of $f(z) = \frac{1}{2 z^2 13 z + 15}$ in the annulus $\frac{3}{2} < |z| < 5$. Then $\frac{a_1}{a_2}$ is equal to ______
- Q.54 The value of $\frac{i}{4-\pi} \int_{|z|=4} \frac{dz}{z \cos(z)}$ is equal to _____
- Q.55 Suppose that among all continuously differentiable functions y(x), $x \in \mathbb{R}$, with y(0) = 0 and $y(1) = \frac{1}{2}$, the function $y_0(x)$ minimizes the functional $\int_{0}^{1} (e^{-(y'-x)} + (1+e^{y})y') dx$

Then
$$y_0\left(\frac{1}{2}\right)$$
 is equal to
(A) 0 (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$
END OF THE QUESTION PAPER