List of Symbols, Notations and Data

$B(n, p)$: Binomial distribution with n trials and success probability $p ; n \in\{1,2, \ldots\}$ and $p \in(0,1)$
$U(a, b)$: Uniform distribution on the interval $(a, b),-\infty<a<b<\infty$
$N\left(\mu, \sigma^{2}\right)$: Normal distribution with mean μ and variance $\sigma^{2}, \mu \in(-\infty, \infty), \sigma>0$
$P(A)$: Probability of the event A
Poisson (λ) : Poisson distribution with mean $\lambda, \lambda>0$
$E(X)$: Expected value (mean) of the random variable X
If $Z \sim N(0,1)$, then $P(Z \leq 1.96)=0.975$ and $P(Z \leq 0.54)=0.7054$
$\mathbb{Z}:$ Set of integers
\mathbb{Q} : Set of rational numbers
\mathbb{R} : Set of real numbers
\mathbb{C} : Set of complex numbers
\mathbb{Z}_{n} : The cyclic group of order n
$\mathbb{F}[x]$: Polynomial ring over the field \mathbb{F}
$C[0,1]$: Set of all real valued continuous functions on the interval $[0,1]$
$C^{1}[0,1]$: Set of all real valued continuously differentiable functions on the interval $[0,1]$
ℓ_{2} : Normed space of all square-summable real sequences
$L^{2}[0,1]$: Space of all square-Lebesgue integrable real valued functions on the interval $[0,1]$ $\left(C[0,1],\|\quad\|_{2}\right)$: The space $C[0,1]$ with $\|f\| \|_{2}=\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{\frac{1}{2}}$
$\left(C[0,1],\|\quad\|_{\infty}\right)$: The space $C[0,1]$ with $\|f\|_{\infty}=\sup \{|f(x)|: \quad x \in[0,1]\}$
V^{\perp} : The orthogonal complement of V in an inner product space
\mathbb{R}^{n} : n-dimensional Euclidean space
Usual metric d on \mathbb{R}^{n} is given by $d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}$
I_{n} : The $n \times n$ identity matrix ($I:$ the identity matrix when order is NOT specified)
$o(g)$: The order of the element g of a group

Q. 1 - Q. 25 carry one mark each.

Q. $1 \quad$ Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear map defined by

$$
T(x, y, z, w)=(x+z, 2 x+y+3 z, 2 y+2 z, w)
$$

Then the rank of T is equal to \qquad
Q. 2 Let M be a 3×3 matrix and suppose that 1, 2 and 3 are the eigenvalues of M. If

$$
M^{-1}=\frac{M^{2}}{\alpha}-M+\frac{11}{\alpha} I_{3}
$$

for some scalar $\alpha \neq 0$, then α is equal to \qquad
Q. 3 Let M be a 3×3 singular matrix and suppose that 2 and 3 are eigenvalues of M. Then the number of linearly independent eigenvectors of $M^{3}+2 M+I_{3}$ is equal to \qquad
Q. $4 \quad$ Let M be a 3×3 matrix such that $M\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}6 \\ -3 \\ 0\end{array}\right)$ and suppose that $M^{3}\left(\begin{array}{c}1 \\ -1 / 2 \\ 0\end{array}\right)=\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$ for some $\alpha, \beta, \gamma \in \mathbb{R}$. Then $|\alpha|$ is equal to \qquad
Q. 5 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\int_{0}^{x} \sin ^{2}\left(t^{2}\right) d t
$$

Then the function f is
(A) uniformly continuous on [0,1) but NOT on $(0, \infty)$
(B) uniformly continuous on $(0, \infty)$ but NOT on $[0,1)$
(C) uniformly continuous on both $[0,1)$ and $(0, \infty)$
(D) neither uniformly continuous on $\lceil 0,1)$ nor uniformly continuous on $(0, \infty)$
Q. 6

Consider the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, where $a_{n}= \begin{cases}\frac{1}{3^{n}} & \text { if } n \text { is even } \\ \frac{1}{5^{n}} & \text { if } n \text { is odd. }\end{cases}$
The radius of convergence of the series is equal to \qquad
Q. 7 Let $C=\{z \in \mathbb{C}:|z-i|=2\}$. Then $\frac{1}{2 \pi} \oint_{C} \frac{z^{2}-4}{z^{2}+4} d z$ is equal to \qquad
Q. 8 Let $X \sim B\left(5, \frac{1}{2}\right)$ and $Y \sim U(0,1)$. Then $\frac{P(X+Y \leq 2)}{P(X+Y \geq 5)}$ is equal to \qquad
Q. 9 Let the random variable X have the distribution function

$$
F(x)= \begin{cases}0 & \text { if } \quad x<0 \\ \frac{x}{2} & \text { if } 0 \leq x<1 \\ \frac{3}{5} & \text { if } 1 \leq x<2 \\ \frac{1}{2}+\frac{x}{8} & \text { if } 2 \leq x<3 \\ 1 & \text { if } \quad x \geq 3 .\end{cases}
$$

Then $P(2 \leq X<4)$ is equal to \qquad
Q. 10 Let X be a random variable having the distribution function

$$
F(x)= \begin{cases}0 & \text { if } \quad x<0 \\ \frac{1}{4} & \text { if } 0 \leq x<1 \\ \frac{1}{3} & \text { if } 1 \leq x<2 \\ \frac{1}{2} & \text { if } 2 \leq x<\frac{11}{3} \\ 1 & \text { if } \quad x \geq \frac{11}{3} .\end{cases}
$$

Then $E(X)$ is equal to \qquad
Q. 11 In an experiment, a fair die is rolled until two sixes are obtained in succession. The probability that the experiment will end in the fifth trial is equal to
(A) $\frac{125}{6^{5}}$
(B) $\frac{150}{6^{5}}$
(C) $\frac{175}{6^{5}}$
(D) $\frac{200}{6^{5}}$
Q. 12 Let $x_{1}=2.2, x_{2}=4.3, x_{3}=3.1, x_{4}=4.5, x_{5}=1.1$ and $x_{6}=5.7$ be the observed values of a random sample of size 6 from a $U(\theta-1, \theta+4)$ distribution, where $\theta \in(0, \infty)$ is unknown. Then a maximum likelihood estimate of θ is equal to
(A) 1.8
(B) 2.3
(C) 3.1
(D) 3.6
Q. 13 Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ be the open unit disc in \mathbb{R}^{2} with boundary $\partial \Omega$. If $u(x, y)$ is the solution of the Dirichlet problem

$$
\begin{array}{cc}
u_{x x}+u_{y y}=0 & \text { in } \Omega \\
u(x, y)=1-2 y^{2} & \text { on } \partial \Omega
\end{array}
$$

then $u\left(\frac{1}{2}, 0\right)$ is equal to
(A) -1
(B) $\frac{-1}{4}$
(C) $\frac{1}{4}$
(D) 1
Q. 14 Let $c \in \mathbb{Z}_{3}$ be such that $\frac{\mathbb{Z}_{3}[X]}{\left\langle X^{3}+c X+1\right\rangle}$ is a field. Then c is equal to \qquad
Q. 15 Let $V=C^{1}[0,1], X=\left(C[0,1],\|\quad\|_{\infty}\right)$ and $Y=\left(C[0,1],\|\quad\|_{2}\right)$. Then V is
(A) dense in X but NOT in Y
(B) dense in Y but NOT in X
(C) dense in both X and Y
(D) neither dense in X nor dense in Y
Q. 16 Let $T:\left(C[0,1],\| \|_{\infty}\right) \rightarrow \mathbb{R}$ be defined by $T(f)=\int_{0}^{1} 2 x f(x) d x$ for all $f \in C[0,1]$. Then $\|T\|$ is equal to \qquad
Q. 17 Let τ_{1} be the usual topology on \mathbb{R}. Let τ_{2} be the topology on \mathbb{R} generated by $\mathcal{B}=\{[a, b) \subset \mathbb{R}:-\infty<a<b<\infty\}$. Then the set $\left\{x \in \mathbb{R}: 4 \sin ^{2} x \leq 1\right\} \cup\left\{\frac{\pi}{2}\right\}$ is
(A) closed in (\mathbb{R}, τ_{1}) but NOT in (\mathbb{R}, τ_{2})
(B) closed in (\mathbb{R}, τ_{2}) but NOT in (\mathbb{R}, τ_{1})
(C) closed in both (\mathbb{R}, τ_{1}) and (\mathbb{R}, τ_{2})
(D) neither closed in $\left(\mathbb{R}, \tau_{1}\right)$ nor closed in $\left(\mathbb{R}, \tau_{2}\right)$
Q. 18 Let X be a connected topological space such that there exists a non-constant continuous function $f: X \rightarrow \mathbb{R}$, where \mathbb{R} is equipped with the usual topology. Let $f(X)=\{f(x): x \in X\}$. Then
(A) X is countable but $f(X)$ is uncountable
(B) $f(X)$ is countable but X is uncountable
(C) both $f(X)$ and X are countable
(D) both $f(X)$ and X are uncountable
Q. 19 Let d_{1} and d_{2} denote the usual metric and the discrete metric on \mathbb{R}, respectively.

Let $f:\left(\mathbb{R}, d_{1}\right) \rightarrow\left(\mathbb{R}, d_{2}\right)$ be defined by $f(x)=x, x \in \mathbb{R}$. Then
(A) f is continuous but f^{-1} is NOT continuous
(B) f^{-1} is continuous but f is NOT continuous
(C) both f and f^{-1} are continuous
(D) neither f nor f^{-1} is continuous
Q. 20 If the trapezoidal rule with single interval $[0,1]$ is exact for approximating the integral $\int_{0}^{1}\left(x^{3}-c x^{2}\right) d x$, then the value of c is equal to \qquad
Q. 21 Suppose that the Newton-Raphson method is applied to the equation $2 x^{2}+1-e^{x^{2}}=0$ with an initial approximation x_{0} sufficiently close to zero. Then, for the root $x=0$, the order of convergence of the method is equal to \qquad
Q. 22 The minimum possible order of a homogeneous linear ordinary differential equation with real constant coefficients having $x^{2} \sin (x)$ as a solution is equal to \qquad
Q. 23 The Lagrangian of a system in terms of polar coordinates (r, θ) is given by

$$
L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-m g r(1-\cos (\theta))
$$

where m is the mass, g is the acceleration due to gravity and \dot{s} denotes the derivative of s with respect to time. Then the equations of motion are
(A) $2 \ddot{r}=r \dot{\theta}^{2}-g(1-\cos (\theta)), \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=-g r \sin (\theta)$
(B) $2 \ddot{r}=r \dot{\theta}^{2}+g(1-\cos (\theta)), \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=-g r \sin (\theta)$
(C) $2 \ddot{r}=r \dot{\theta}^{2}-g(1-\cos (\theta)), \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=g r \sin (\theta)$
(D) $2 \ddot{r}=r \dot{\theta}^{2}+g(1-\cos (\theta)), \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=g r \sin (\theta)$
Q. 24 If $y(x)$ satisfies the initial value problem

$$
\left(x^{2}+y\right) d x=x d y, \quad y(1)=2
$$

then $y(2)$ is equal to \qquad
Q. 25 It is known that Bessel functions $J_{n}(x)$, for $n \geq 0$, satisfy the identity

$$
e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=J_{0}(x)+\sum_{n=1}^{\infty} J_{n}(x)\left(t^{n}+\frac{(-1)^{n}}{t^{n}}\right)
$$

for all $t>0$ and $x \in \mathbb{R}$. The value of $J_{0}\left(\frac{\pi}{3}\right)+2 \sum_{n=1}^{\infty} J_{2 n}\left(\frac{\pi}{3}\right)$ is equal to \qquad

Q. 26 - Q. 55 carry two marks each.

Q. 26 Let X and Y be two random variables having the joint probability density function

$$
f(x, y)=\left\{\begin{array}{lc}
2 & \text { if } 0<x<y<1 \\
0 & \text { otherwise } .
\end{array}\right.
$$

Then the conditional probability $P\left(\left.X \leq \frac{2}{3} \right\rvert\, Y=\frac{3}{4}\right)$ is equal to
(A) $\frac{5}{9}$
(B) $\frac{2}{3}$
(C) $\frac{7}{9}$
(D) $\frac{8}{9}$
Q. 27 Let $\Omega=(0,1]$ be the sample space and let $P(\cdot)$ be a probability function defined by

$$
P((0, x])= \begin{cases}\frac{x}{2} & \text { if } 0 \leq x<\frac{1}{2} \\ x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Then $P\left(\left\{\frac{1}{2}\right\}\right)$ is equal to \qquad
Q. 28 Let X_{1}, X_{2} and X_{3} be independent and identically distributed random variables with $E\left(X_{1}\right)=0$ and $E\left(X_{1}^{2}\right)=\frac{15}{4}$. If $\psi:(0, \infty) \rightarrow(0, \infty)$ is defined through the conditional expectation

$$
\psi(t)=E\left(X_{1}^{2} \mid X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=t\right), t>0,
$$

then $E\left(\psi\left(\left(X_{1}+X_{2}\right)^{2}\right)\right)$ is equal to \qquad
Q. 29 Let $X \sim \operatorname{Poisson}(\lambda)$, where $\lambda>0$ is unknown. If $\delta(X)$ is the unbiased estimator of $g(\lambda)=e^{-\lambda}\left(3 \lambda^{2}+2 \lambda+1\right)$, then $\sum_{k=0}^{\infty} \delta(k)$ is equal to \qquad
Q. 30 Let X_{1}, \ldots, X_{n} be a random sample from $N(\mu, 1)$ distribution, where $\mu \in\left\{0, \frac{1}{2}\right\}$. For testing the null hypothesis $H_{0}: \mu=0$ against the alternative hypothesis $H_{1}: \mu=\frac{1}{2}$, consider the critical region

$$
R=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \sum_{i=1}^{n} x_{i}>c\right\},
$$

where c is some real constant. If the critical region R has size 0.025 and power 0.7054 , then the value of the sample size n is equal to \qquad
Q. 31 Let X and Y be independently distributed central chi-squared random variables with degrees of freedom $m(\geq 3)$ and $n(\geq 3)$, respectively. If $E\left(\frac{X}{Y}\right)=3$ and $m+n=14$, then $E\left(\frac{Y}{X}\right)$ is equal to
(A) $\frac{2}{7}$
(B) $\frac{3}{7}$
(C) $\frac{4}{7}$
(D) $\frac{5}{7}$
Q. 32 Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with $P\left(X_{1}=1\right)=\frac{1}{4}$ and $P\left(X_{1}=2\right)=\frac{3}{4}$. If $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, for $n=1,2, \ldots$, then $\lim _{n \rightarrow \infty} P\left(\bar{X}_{n} \leq 1.8\right)$ is equal to \qquad
Q. 33 Let $u(x, y)=2 f(y) \cos (x-2 y),(x, y) \in \mathbb{R}^{2}$, be a solution of the initial value problem

$$
\begin{aligned}
& 2 u_{x}+u_{y}=u \\
& u(x, 0)=\cos (x) .
\end{aligned}
$$

Then $f(1)$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{e}{2}$
(C) e
(D) $\frac{3 e}{2}$
Q. 34 Let $u(x, t), x \in \mathbb{R}, t \geq 0$, be the solution of the initial value problem

$$
\begin{aligned}
u_{t t} & =u_{x x} \\
u(x, 0) & =x \\
u_{t}(x, 0) & =1 .
\end{aligned}
$$

Then $u(2,2)$ is equal to \qquad
Q. 35 Let $W=\operatorname{Span}\left\{\frac{1}{\sqrt{2}}(0,0,1,1), \frac{1}{\sqrt{2}}(1,-1,0,0)\right\}$ be a subspace of the Euclidean space \mathbb{R}^{4}. Then the square of the distance from the point $(1,1,1,1)$ to the subspace W is equal to \qquad
Q. 36 Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear map such that the null space of T is

$$
\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+y+z+w=0\right\}
$$

and the rank of $\left(T-4 I_{4}\right)$ is 3 . If the minimal polynomial of T is $x(x-4)^{\alpha}$, then α is equal to \qquad
Q. 37 Let M be an invertible Hermitian matrix and let $x, y \in \mathbb{R}$ be such that $x^{2}<4 y$. Then
(A) both $M^{2}+x M+y I$ and $M^{2}-x M+y I$ are singular
(B) $M^{2}+x M+y I$ is singular but $M^{2}-x M+y I$ is non-singular
(C) $M^{2}+x M+y I$ is non-singular but $M^{2}-x M+y I$ is singular
(D) both $M^{2}+x M+y I$ and $M^{2}-x M+y I$ are non-singular
Q. 38 Let $G=\left\{e, x, x^{2}, x^{3}, y, x y, x^{2} y, x^{3} y\right\}$ with $o(x)=4, o(y)=2$ and $x y=y x^{3}$. Then the number of elements in the center of the group G is equal to
(A) 1
(B) 2
(C) 4
(D) 8
Q. 39 The number of ring homomorphisms from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to \mathbb{Z}_{4} is equal to \qquad
Q. 40 Let $p(x)=9 x^{5}+10 x^{3}+5 x+15$ and $q(x)=x^{3}-x^{2}-x-2$ be two polynomials in $\mathbb{Q}[x]$. Then, over \mathbb{Q},
(A) $p(x)$ and $q(x)$ are both irreducible
(B) $p(x)$ is reducible but $q(x)$ is irreducible
(C) $p(x)$ is irreducible but $q(x)$ is reducible
(D) $p(x)$ and $q(x)$ are both reducible
Q. 41 Consider the linear programming problem

$$
\text { Maximize } 3 x+9 y
$$

subject to

$$
\begin{gathered}
2 y-x \leq 2 \\
3 y-x \geq 0 \\
2 x+3 y \leq 10 \\
x, y \geq 0
\end{gathered}
$$

Then the maximum value of the objective function is equal to \qquad
Q. 42 Let $S=\left\{\left(x, \sin \frac{1}{x}\right): 0<x \leq 1\right\}$ and $T=S \cup\{(0,0)\}$. Under the usual metric on \mathbb{R}^{2},
(A) S is closed but T is NOT closed
(B) T is closed but S is NOT closed
(C) both S and T are closed
(D) neither S nor T is closed
Q. 43 Let $H=\left\{\left(x_{n}\right) \in \quad \ell_{2}: \sum_{n=1}^{\infty} \frac{x_{n}}{n}=1\right\}$. Then H
(A) is bounded
(B) is closed
(C) is a subspace
(D) has an interior point
Q. 44 Let V be a closed subspace of $L^{2}[0,1]$ and let $f, g \in L^{2}[0,1]$ be given by $f(x)=x$ and $g(x)=x^{2}$. If $V^{\perp}=\operatorname{Span}\{f\}$ and $P g$ is the orthogonal projection of g on V, then $(g-P g)(x), x \in[0,1]$, is
(A) $\frac{3}{4} x$
(B) $\frac{1}{4} x$
(C) $\frac{3}{4} x^{2}$
(D) $\frac{1}{4} x^{2}$
Q. 45 Let $p(x)$ be the polynomial of degree at most 3 that passes through the points $(-2,12),(-1,1)$, $(0,2)$ and $(2,-8)$. Then the coefficient of x^{3} in $p(x)$ is equal to \qquad
Q. 46 If, for some $\alpha, \beta \in \mathbb{R}$, the integration formula

$$
\int_{0}^{2} p(x) d x=p(\alpha)+p(\beta)
$$

holds for all polynomials $p(x)$ of degree at most 3 , then the value of $3(\alpha-\beta)^{2}$ is equal to \qquad
Q. 47 Let $y(t)$ be a continuous function on $[0, \infty)$ whose Laplace transform exists. If $y(t)$ satisfies

$$
\int_{0}^{t}(1-\cos (t-\tau)) y(\tau) d \tau=t^{4}
$$

then $y(1)$ is equal to \qquad
Q. 48 Consider the initial value problem

$$
x^{2} y^{\prime \prime}-6 y=0, \quad y(1)=\alpha, y^{\prime}(1)=6
$$

If $y(x) \rightarrow 0$ as $x \rightarrow 0^{+}$, then α is equal to
Q. 49 Define $f_{1}, f_{2}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{1}(x)=\sum_{n=1}^{\infty} \frac{x \sin \left(n^{2} x\right)}{n^{2}} \text { and } f_{2}(x)=\sum_{n=1}^{\infty} x^{2}\left(1-x^{2}\right)^{n-1}
$$

Then
(A) f_{1} is continuous but f_{2} is NOT continuous
(B) f_{2} is continuous but f_{1} is NOT continuous
(C) both f_{1} and f_{2} are continuous
(D) neither f_{1} nor f_{2} is continuous
Q. 50 Consider the unit sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ and the unit normal vector $\hat{n}=(x, y, z)$ at each point (x, y, z) on S. The value of the surface integral

$$
\iint_{S}\left\{\left(\frac{2 x}{\pi}+\sin \left(y^{2}\right)\right) x+\left(e^{z}-\frac{y}{\pi}\right) y+\left(\frac{2 z}{\pi}+\sin ^{2} y\right) z\right\} d \sigma
$$

is equal to \qquad
Q. 51 Let $D=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x \leq 1000,1 \leq y \leq 1000\right\}$. Define

$$
f(x, y)=\frac{x y}{2}+\frac{500}{x}+\frac{500}{y} .
$$

Then the minimum value of f on D is equal to \qquad
Q. 52 Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Then there exists a non-constant analytic function f on \mathbb{D} such that for all $n=2,3,4, \ldots$
(A) $f\left(\frac{\sqrt{-1}}{n}\right)=0$
(B) $f\left(\frac{1}{n}\right)=0$
(C) $f\left(1-\frac{1}{n}\right)=0$
(D) $f\left(\frac{1}{2}-\frac{1}{n}\right)=0$
Q. 53 Let $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ be the Laurent series expansion of $f(z)=\frac{1}{2 z^{2}-13 z+15}$ in the annulus $\frac{3}{2}<|z|<5$. Then $\frac{a_{1}}{a_{2}}$ is equal to \qquad
Q. 54 The value of $\frac{i}{4-\pi} \int_{|z|=4} \frac{d z}{z \cos (z)} \quad$ is equal to \qquad
Q. 55 Suppose that among all continuously differentiable functions $y(x), x \in \mathbb{R}$, with $y(0)=0$ and $y(1)=\frac{1}{2}$, the function $y_{0}(x)$ minimizes the functional

$$
\int_{0}^{1}\left(e^{-\left(y^{\prime}-x\right)}+(1+y) y^{\prime}\right) d x
$$

Then $y_{0}\left(\frac{1}{2}\right)$ is equal to
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$

