

Q. 1 - Q. 25 carry one mark each.

Q.1 A satellite is moving in a circular orbit around the Earth. If *T*, *V* and *E* are its average kinetic, average potential and total energies, respectively, then which one of the following options is correct?

(A)
$$V = -2T$$
; $E = -T$

(B)
$$V = -T$$
; $E = 0$

(C)
$$V = -T/2$$
; $E = T/2$

(D)
$$V = -3T/2$$
; $E = -T/2$

- Q.2 The Pauli matrices for three spin-½ particles are $\vec{\sigma}_1$, $\vec{\sigma}_2$, and $\vec{\sigma}_3$, respectively. The dimension of the Hilbert space required to define an operator $\hat{O} = \vec{\sigma}_1 \cdot \vec{\sigma}_2 \times \vec{\sigma}_3$ is _____
- Q.3 The mean kinetic energy of a nucleon in a nucleus of atomic weight A varies as A^n , where n is _____ (upto two decimal places)
- Q.4 Let \vec{L} and \vec{p} be the angular and linear momentum operators, respectively, for a particle. The commutator $[L_x, p_y]$ gives

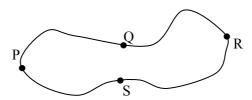
(A)
$$-i\hbar p_z$$

(C)
$$i\hbar p$$

(D)
$$i\hbar p_z$$

- Q.5 The decay $\mu^+ \rightarrow e^+ + \gamma$ is forbidden, because it violates
 - (A) momentum and lepton number conservations
 - (B) baryon and lepton number conservations
 - (C) angular momentum conservation
 - (D) lepton number conservation
- Q.6 An operator for a spin-½ particle is given by $\hat{A} = \lambda \vec{\sigma} \cdot \vec{B}$, where $\vec{B} = \frac{B}{\sqrt{2}}(\hat{x} + \hat{y})$, $\vec{\sigma}$ denotes Pauli matrices and λ is a constant. The eigenvalues of \hat{A} are

(A)
$$\pm \lambda B / \sqrt{2}$$


(B)
$$\pm \lambda B$$

(C)
$$0$$
, λB

(D)
$$0, -\lambda B$$

- Q.7 In an inertial frame S, two events A and B take place at $(ct_A = 0, \vec{r}_A = 0)$ and $(ct_B = 0, \vec{r}_B = 2\hat{y})$, respectively. The times at which these events take place in a frame S' moving with a velocity $0.6c \hat{y}$ with respect to S are given by
 - $ct'_{A} = 0$; $ct'_{B} = -3/2$ (A)
- $ct'_{A} = 0; ct'_{B} = 0$
- $ct'_{A} = 0$; $ct'_{B} = 3/2$ (C)
- (D) $ct'_A = 0$; $ct'_B = 1/2$
- Q.8 Given that the magnetic flux through the closed loop PQRSP is ϕ . If $\int_{0}^{\pi} \vec{A} \cdot \vec{dl} = \phi_1$ along PQR, the

value of $\int_{0}^{R} \vec{A} \cdot \vec{dl}$ along PSR is

- (A) $\phi \phi_1$

- (D) ϕ_1

- Q.9 If $f(x) = e^{-x^2}$ and $g(x) = |x|e^{-x^2}$, then

 - (B) f is differentiable everywhere but g is not (C) g is differentiable.
 - (D) g is discontinuous at x = 0
- In Bose-Einstein condensates, the particles O.10
 - (A) have strong interparticle attraction
 - (B) condense in real space
 - (C) have overlapping wavefuntions
 - (D) have large and positive chemical potential

Q.11 Consider a system of N non-interacting spin- $\frac{1}{2}$ particles, each having a magnetic moment μ , is in a magnetic field $\vec{B} = B \hat{z}$. If E is the total energy of the system, the number of accessible microstates Ω is given by

(A)
$$\Omega = \frac{N!}{\frac{1}{2} \left(N - \frac{E}{\mu B} \right)!} \frac{1}{2} \left(N + \frac{E}{\mu B} \right)!$$
 (B) $\Omega = \frac{\left(N - \frac{E}{\mu B} \right)!}{\left(N + \frac{E}{\mu B} \right)!}$

(B)
$$\Omega = \frac{\left(N - \frac{E}{\mu B}\right)!}{\left(N + \frac{E}{\mu B}\right)!}$$

(C)
$$\Omega = \frac{1}{2} \left(N - \frac{E}{\mu B} \right)! \frac{1}{2} \left(N + \frac{E}{\mu B} \right)!$$

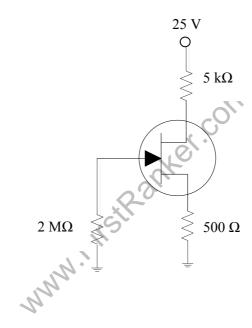
(D)
$$\Omega = \frac{N!}{\left(N + \frac{E}{\mu B}\right)!}$$

- Q.12 For a black body radiation in a cavity, photons are created and annihilated freely as a result of emission and absorption by the walls of the cavity. This is because
 - (A) the chemical potential of the photons is zero
 - (B) photons obey Pauli exclusion principle
 - (C) photons are spin-1 particles
 - (D) the entropy of the photons is very large
- Q.13 Consider w = f(z) = u(x, y) + iv(x, y) to be an analytic function in a domain D. Which one of the following options is **NOT** correct?
 - (A) u(x, y) satisfies Laplace equation in D
 - (B) v(x, y) satisfies Laplace equation in D
 - (C) $\int_{-z_2}^{z_2} f(z)dz$ is dependent on the choice of the contour between z_1 and z_2 in D
 - (D) f(z) can be Taylor expanded in D
- The value of $\int_0^3 t^2 \delta(3t-6)dt$ is _____ (upto one decimal place)

Q.15 Which one of the following **DOES NOT** represent an exclusive OR operation for inputs A and B?

(A) $(A+B)\overline{AB}$

(B) $A\bar{B} + B\bar{A}$

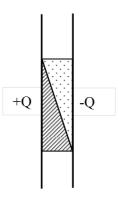

(C) $(A+B)(\bar{A}+\bar{B})$

(D) (A+B)AB

Q.16 Consider a complex function $f(z) = \frac{1}{z(z+\frac{1}{2})\cos{(z\pi)}}$. Which one of the following statements is correct?

- (A) f(z) has simple poles at z = 0 and z = -1/2
- (B) f(z) has a second order pole at $z = -\frac{1}{2}$
- (C) f(z) has infinite number of second order poles
- (D) f(z) has all simple poles

Q.17 In the given circuit, the voltage across the source resistor is 1 V. The drain voltage (in V) is



Q.18 A point charge is placed between two semi-infinite conducting plates which are inclined at an angle of 30° with respect to each other. The number of image charges is ______

Q.19 A beam of X-ray of intensity I_0 is incident normally on a metal sheet of thickness 2 mm. The intensity of the transmitted beam is $0.025I_0$. The linear absorption coefficient of the metal sheet (in m^{-1}) is _____ (upto one decimal place)

- Q.20 The lattice parameters a, b, c of an orthorhombic crystal are related by a = 2b = 3c. In units of a, the interplanar separation between the (110) planes is _____ (upto three decimal places)
- 0.21In a Hall effect experiment, the Hall voltage for an intrinsic semiconductor is negative. This is because (symbols carry usual meaning)
 - (A) $n \approx p$

- (C) $\mu_e > \mu_h$ (D) $m_e^* > m_h^*$
- The space between two plates of a capacitor carrying charges +Q and -Q is filled with two different Q.22 dielectric materials, as shown in the figure. Across the interface of the two dielectric materials, which one of the following statements is correct?

- (A) \vec{E} and \vec{D} are continuous
- (B) \vec{E} is continuous and \vec{D} is disconitnuous
- (C) \vec{D} is continuous and \vec{E} is discontinuous (D) \vec{E} and \vec{D} are discontinuous
- The energy dependence of the density of states for a two dimensional non-relativistic electron gas is O.23given by, $g(E) = CE^n$, where C is constant. The value of n is _____
- The dispersion relation for phonons in a one dimensional monatomic Bravais lattice with lattice Q.24 spacing a and consisting of ions of masses M is given by, $\omega(k) = \sqrt{\frac{2C}{M} \left[1 - \cos(ka)\right]}$, where ω is the frequency of oscillation, k is the wavevector and C is the spring constant. For the long wavelength modes $(\lambda >> a)$, the ratio of the phase velocity to the group velocity is ____

www.FirstRanker.com

Q.25 Four forces are given below in Cartesian and spherical polar coordinates.

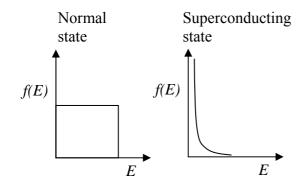
(i)
$$\vec{F}_1 = K \exp(-r^2 / R^2) \hat{r}$$

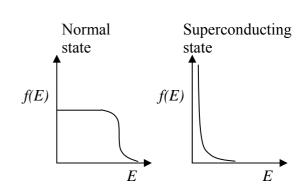
(ii)
$$\vec{F}_2 = K(x^3 \hat{y} - y^3 \hat{z})$$

(iii)
$$\vec{F}_3 = K(x^3 \hat{x} + y^3 \hat{y})$$

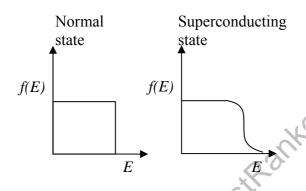
(iv)
$$\vec{F}_4 = K(\hat{\phi}/r)$$

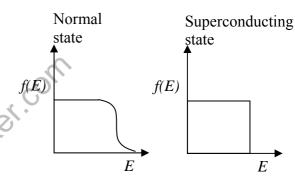
where K is a constant. Identify the correct option.

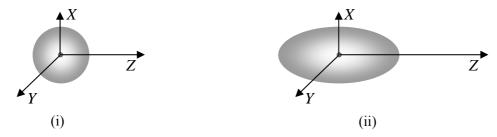

- (A) (iii) and (iv) are conservative but (i) and (ii) are not
- (B) (i) and (ii) are conservative but (iii) and (iv) are not
- (C) (ii) and (iii) are conservative but (i) and (iv) are not
- (D) (i) and (iii) are conservative but (ii) and (iv) are not


Q. 26 – Q. 55 carry two marks each.

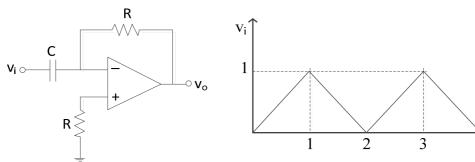
- Q.26 Consider a system of eight non-interacting, identical quantum particles of spin-3/2 in a one dimensional box of length L. The minimum excitation energy of the system, in units of $\frac{\pi^2 \hbar^2}{2mL^2}$ is
- Q.27 The excitation wavelength of laser in a Raman effect experiment is 546 nm. If the Stokes' line is observed at 552 nm, then the wavenumber of the anti-Stokes' line (in cm^{-1}) is _____
- Q.28 The binding energy per molecule of NaCl (lattice parameter is 0.563 nm) is 7.95 eV. The repulsive term of the potential is of the form $\frac{K}{r^9}$, where K is a constant. The value of the Madelung constant is _____ (upto three decimal places) (Electron charge $e = -1.6 \times 10^{-19} \ C$; $\varepsilon_0 = 8.854 \times 10^{-12} \ C^2 N^{-1} m^{-2}$)
- Q.29 Given that the Fermi energy of gold is 5.54 eV, the number density of electrons is _____ \times 10²⁸ m^{-3} (upto one decimal place) (Mass of electron = 9.11 \times 10⁻³¹ kg; $h = 6.626 \times 10^{-34} I$. s; 1 eV = 1.6 \times 10⁻¹⁹I)
- Q.30 The band gap of an intrinsic semiconductor is $E_g = 0.72 \ eV$ and $m_h^* = 6m_e^*$. At 300 K, the Fermi level with respect to the edge of the valence band (in eV) is at _____ (upto three decimal places) $k_B = 1.38 \times 10^{-23} J K^{-1}$

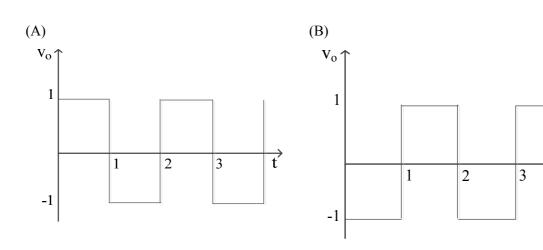

- Q.31 The number of permitted transitions from ${}^2P_{3/2} \rightarrow {}^2S_{1/2}$ in the presence of a weak magnetic field is
- Q.32 Which one of the following represents the electron occupancy for a superconductor in its normal and superconducting states?

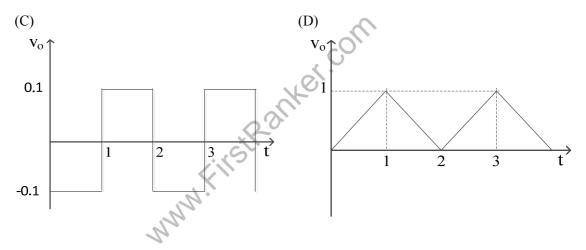

(A) (B)


(C) (D)

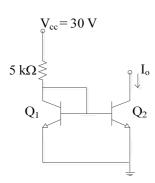
Q.33 A charge -q is distributed uniformly over a sphere, with a positive charge q at its center in (i). Also in (ii), a charge -q is distributed uniformly over an ellipsoid with a positive charge q at its center. With respect to the origin of the coordinate system, which one of the following statements is correct?


- (A) The dipole moment is zero in both (i) and (ii)
- (B) The dipole moment is non-zero in (i) but zero in (ii)
- (C) The dipole moment is zero in (i) but non-zero in (ii)
- (D) The dipole moment is non-zero in both (i) and (ii)


MMM.FirstRanker.com


 \overrightarrow{t}

O.34 Consider the circuit shown in the figure, where RC = 1. For an input signal V_i shown below, choose the correct V_o from the options:



- Q.35 A long solenoid is embedded in a conducting medium and is insulated from the medium. If the current through the solenoid is increased at a constant rate, the induced current in the medium as a function of the radial distance r from the axis of the solenoid is proportional to
 - (A) r^2 inside the solenoid and $\frac{1}{r}$ outside (B) r inside the solenoid and $\frac{1}{r^2}$ outside
 - (C) r^2 inside the solenoid and $\frac{1}{r^2}$ outside (D) r inside the solenoid and $\frac{1}{r}$ outside

Q.36 In the *simple current source* shown in the figure, Q_1 and Q_2 are identical transistors with current gain $\beta = 100$ and $V_{BE} = 0.7 V$

The current I₀ (in mA) is _____ (upto two decimal places)

Q.37 Match the phrases in Group I and Group II and identify the correct option.

Group I

Group II

- (P) Electron spin resonance (ESR)
- (Q) Nuclear magnetic resonance (NMR)
- (R) Transition between vibrational states of a molecule
- (S) Electronic transition

- (i) radio frequency
- (ii) visible range frequency
- (iii) microwave frequency
- (iv) far-infrared range

- (A) (P-i), (Q-ii), (R-iii), (S-iv)
- (B) (P-ii), (Q-i), (R-iv), (S-iii)
- (C) (P-iii), (Q-iv), (R-i), (S-ii)
- (D) (P-iii), (Q-i), (R-iv), (S-ii)
- Q.38 Consider the motion of the Sun with respect to the rotation of the Earth about its axis. If \vec{F}_c and \vec{F}_{Co} denote the centrifugal and the Coriolis forces, respectively, acting on the Sun, then
 - (A) \vec{F}_c is radially outward and $\vec{F}_{Co} = \vec{F}_c$
 - (B) \vec{F}_c is radially inward and $\vec{F}_{Co} = -2\vec{F}_c$
 - (C) \vec{F}_c is radially outward and $\vec{F}_{Co} = -2\vec{F}_c$
 - (D) \vec{F}_c is radially outward and $\vec{F}_{co} = 2\vec{F}_c$
- Q.39 In a rigid-rotator of mass M, if the energy of the first excited state is 1 meV, then the fourth excited state energy (in meV) is ______

- Q.40 A plane wave $(\hat{x}+i\hat{y})E_0 \exp[i(kz-\omega t)]$ after passing through an optical element emerges as $(\hat{x}-i\hat{y})E_0 \exp[i(kz-\omega t)]$, where k and ω are the wavevector and the angular frequency, respectively. The optical element is a
 - (A) quarter wave plate

(B) half wave plate

(C) polarizer

- (D) Faraday rotator
- Q.41 The Lagrangian for a particle of mass m at a position \vec{r} moving with a velocity \vec{v} is given by $L = \frac{m}{2}\vec{v}^2 + C\vec{r}.\vec{v} V(r), \text{ where } V(r) \text{ is a potential and } C \text{ is a constant. If } \vec{p}_c \text{ is the canonical momentum, then its Hamiltonian is given by}$

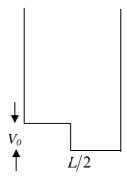
(A)
$$\frac{1}{2m} (\vec{p}_c + C \vec{r})^2 + V(r)$$

(B)
$$\frac{1}{2m} (\vec{p}_c - C \vec{r})^2 + V(r)$$

(C)
$$\frac{p_c^2}{2m} + V(r)$$

(D)
$$\frac{1}{2m}p_c^2 + C^2r^2 + V(r)$$

- Q.42 The Hamiltonian for a system of two particles of masses m_1 and m_2 at \vec{r}_1 and \vec{r}_2 having velocities \vec{v}_1 and \vec{v}_2 is given by $H = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 + \frac{C}{\left(\vec{r}_1 \vec{r}_2\right)^2} \hat{z} \cdot \left(\vec{r}_1 \times \vec{r}_2\right)$, where C is a constant. Which one of the following statements is correct?
 - (A) The total energy and total momentum are conserved
 - (B) Only the total energy is conserved
 - (C) The total energy and the z component of the total angular momentum are conserved
 - (D) The total energy and total angular momentum are conserved
- Q.43 A particle of mass 0.01 kg falls freely in the earth's gravitational field with an initial velocity $v(0) = 10 \,\mathrm{ms^{-1}}$. If the air exerts a frictional force of the form, f = -kv, then for $k = 0.05 \,Nm^{-1}s$, the velocity (in ms^{-1}) at time $t = 0.2 \,s$ is _____ (upto two decimal places) (use $g = 10 \,ms^{-2}$ and e = 2.72)



- 0.44In the nuclear shell model, the potential is modeled as $V(r) = \frac{1}{2}m\omega^2 r^2 - \lambda \vec{L} \cdot \vec{S}$, $\lambda > 0$. The correct spin - parity and isospin assignments for the ground state of ${}^{13}C$ is
 - (A) $\frac{1}{2}^{-}; \frac{-1}{2}$

(B) $\frac{1}{2}^+; \frac{-1}{2}$

(C) $\frac{3}{2}^+; \frac{1}{2}$

- (D) $\frac{3}{2}$; $\frac{-1}{2}$
- A particle is confined in a box of length L as shown below.

If the potential V_0 is treated as a perturbation, including the first order correction, the ground state

(A)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + V_0$$

(B)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} - \frac{V_0}{2}$$

(D) $E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{2}$

(C)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{4}$$

(D)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{2}$$

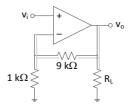
Suppose a linear harmonic oscillator of frequency ω and mass m is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|\psi_0\rangle + e^{i\frac{\pi}{2}} |\psi_1\rangle \right]$$
 at $t = 0$ where $|\psi_0\rangle$ and $|\psi_1\rangle$ are the ground and the first excited

states, respectively. The value of $\langle \psi | x | \psi \rangle$ in the units of $\sqrt{\frac{\hbar}{m\omega}}$ at t = 0 is ______

Q.47 A particle with rest mass M is at rest and decays into two particles of equal rest masses $\frac{3}{10}M$ which move along the z axis. Their velocities are given by

(A)
$$\vec{v}_1 = \vec{v}_2 = (0.8c)\hat{z}$$


(B)
$$\vec{v}_1 = -\vec{v}_2 = (0.8c)\hat{z}$$

(C)
$$\vec{v}_1 = -\vec{v}_2 = (0.6c)\hat{z}$$

(D)
$$\vec{v}_1 = (0.6c)\hat{z}$$
; $\vec{v}_2 = (-0.8c)\hat{z}$

In the given circuit, if the open loop gain $A = 10^5$, the feedback configuration and the closed loop 0.48 gain A_f are

(A) series-shunt, $A_f = 9$

(B) series-series, $A_f = 10$

(C) series-shunt, $A_f = 10$

(D) shunt-shunt, $A_f = 10$

Q.49 A function y(z) satisfies the ordinary differential equation $y'' + \frac{1}{z}y' - \frac{m^2}{z^2}y = 0$, where $m = 0, 1, 2, 3, \dots$ Consider the four statements P, Q, R, S as given below.

P: z^m and z^{-m} are linearly independent solutions for all values of m

Q: z^m and z^{-m} are linearly independent solutions for all values of m>0

R: $\ln z$ and 1 are linearly independent solutions for m = 0

S: z^m and $\ln z$ are linearly independent solutions for all values of m

The correct option for the combination of valid statements is

- (A) P, R and S only (B) P and R only
- (C) Q and R only
- The entropy of a gas containing N particles enclosed in a volume V is given by Q.50 $S = Nk_B \ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right)$, where E is the total energy, a is a constant and k_B is the Boltzmann constant. The chemical potential μ of the system at a temperature T is given by

(A)
$$\mu = -k_B T \left[\ln \left(\frac{aV E^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right) - \frac{5}{2} \right]$$

(A)
$$\mu = -k_B T \left[\ln \left(\frac{aV E^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right) - \frac{5}{2} \right]$$
 (B) $\mu = -k_B T \left[\ln \left(\frac{aV E^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right) - \frac{3}{2} \right]$

(C)
$$\mu = -k_B T \left[\ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{3}{2}}} \right) - \frac{5}{2} \right]$$

(C)
$$\mu = -k_B T \left[\ln \left(\frac{aV E^{\frac{3}{2}}}{N^{\frac{3}{2}}} \right) - \frac{5}{2} \right]$$
 (D) $\mu = -k_B T \left[\ln \left(\frac{aV E^{\frac{3}{2}}}{N^{\frac{3}{2}}} \right) - \frac{3}{2} \right]$

- Q.51 Let the Hamiltonian for two spin-½ particles of equal masses m, momenta \vec{p}_1 and \vec{p}_2 and positions \vec{r}_1 and \vec{r}_2 be $H = \frac{1}{2m} p_1^2 + \frac{1}{2m} p_2^2 + \frac{1}{2} m \omega^2 \left(r_1^2 + r_2^2 \right) + k \vec{\sigma}_1 \cdot \vec{\sigma}_2$, where $\vec{\sigma}_1$ and $\vec{\sigma}_2$ denote the corresponding Pauli matrices, $\hbar \omega = 0.1 \, eV$ and $k = 0.2 \, eV$. If the ground state has net spin zero, then the energy (in eV) is ______
- Q.52 The average energy U of a one dimensional quantum oscillator of frequency ω and in contact with a heat bath at temperature T is given by
 - (A) $U = \frac{1}{2}\hbar\omega \coth\left(\frac{1}{2}\beta\hbar\omega\right)$
- (B) $U = \frac{1}{2}\hbar\omega \sinh\left(\frac{1}{2}\beta\hbar\omega\right)$
- (C) $U = \frac{1}{2}\hbar\omega \tanh\left(\frac{1}{2}\beta\hbar\omega\right)$
- (D) $U = \frac{1}{2}\hbar\omega \cosh\left(\frac{1}{2}\beta\hbar\omega\right)$
- Q.53 A monochromatic plane wave (wavelength = 600 nm) $E_0 \exp[i(kz \omega t)]$ is incident normally on a diffraction grating giving rise to a plane wave $E_1 \exp\left[i(\vec{k}_1 \cdot \vec{r} \omega t)\right]$ in the first order of diffraction. Here $E_1 < E_0$ and $\vec{k}_1 = \left|\vec{k}_1\right| \left[\frac{1}{2}\hat{x} + \frac{\sqrt{3}}{2}\hat{z}\right]$. The period (in μ m) of the diffraction grating is _____ (upto one decimal place)
- Q.54 The Heaviside function is defined as $H(t) = \begin{cases} +1 & \text{for } t > 0 \\ -1 & \text{for } t < 0 \end{cases}$ and its Fourier transform is given by $-2i/\omega$. The Fourier transform of $\frac{1}{2} [H(t+1/2) H(t-1/2)]$ is
 - (A) $\frac{\sin\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$

(B) $\frac{\cos\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}}$

(C) $\sin\left(\frac{\omega}{2}\right)$

- (D) 0
- Q.55 The atomic masses of ${}^{152}_{63}Eu$, ${}^{152}_{62}Sm$, ${}^{1}_{1}H$ and neutron are 151.921749, 151.919756, 1.007825 and 1.008665 in atomic mass units (*amu*), respectively. Using the above information, the *Q*-value of the reaction ${}^{152}_{63}Eu + n \rightarrow {}^{152}_{62}Sm + p$ is _____ × 10^{-3} *amu* (upto three decimal places)

END OF THE QUESTION PAPER