H: CHEMISTRY (COMPULSORY)

Q. 1 - Q. 5 carry one mark each.

Q. 1 The molecule having net 'non-zero dipole moment' is
(A) CCl_{4}
(B) NF_{3}
(C) CO_{2}
(D) BCl_{3}
Q. 2 The Diels-Alder adduct from the reaction between cyclopentadiene and benzyne is
(A)

(B)

(C)

(D)

Q. 3 The number of possible enantiomeric pair(s) in $\mathrm{HOOC}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}$ is \qquad
Q. $4 \quad$ For the electrochemical reaction, $\mathrm{Cu}^{2+}(a q)+\mathrm{Zn}(s) \rightleftharpoons \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(a q)$ the equilibrium constant at $25^{\circ} \mathrm{C}$ is 1.7×10^{37}. The change in standard Gibbs free energy $\left(\Delta G^{\circ}\right)$ for this reaction at that temperature will be \qquad $\mathrm{kJ} \mathrm{mol}^{-7}$ (up to one decimal place).
(Given: $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
Q. 5 Among the following diagrams, the one that correctly describes a zero order reaction ($\mathrm{X} \rightarrow$ product) is
(Given: $[\mathrm{X}]_{\mathrm{o}}=$ initial concentration of reactant $\mathrm{X} ;[\mathrm{X}]=$ concentration of reactant X at time t and $\mathrm{t}_{1 / 2}=$ half-life period of reactant X)
(A)

(B)

(C)

(D)

Q. 6 - Q. 15 carry two marks each.

Q. 6 If the radius of first Bohr orbit is $0.53 \AA$, then the radius of the third Bohr orbit is
(A) $2.12 \AA$
(B) $4.77 \AA$
(C) $1.59 \AA$
(D) $3.18 \AA$
Q. 7 If 50 mL of 0.02 M HCl is added to 950 mL of $\mathrm{H}_{2} \mathrm{O}$, then the pH of the final solution will be \qquad
Q. $8 \quad$ Stability of $\left[\mathrm{CrCl}_{6}\right]^{3-}(\mathbf{X}),\left[\mathrm{MnCl}_{6}\right]^{3-}(\mathbf{Y})$ and $\left[\mathrm{FeCl}_{6}\right]^{3-}(\mathbf{Z})$ follows the order (Given: Atomic numbers of $\mathrm{Cr}=24, \mathrm{Mn}=25$ and $\mathrm{Fe}=26$)
(A) $\mathbf{X}>\mathbf{Y}>\mathbf{Z}$
(B) $\mathbf{X}<\mathbf{Y}<\mathbf{Z}$
(C) $\mathbf{Y}<\mathbf{X}<\mathbf{Z}$
(D) $\mathbf{X}<\mathbf{Y}=\mathbf{Z}$
Q. 9 Among the following pairs, the paramagnetic and diamagnetic species, respectively, are
(A) CO and $\mathrm{O}_{2}{ }^{-}$
(B) NO and CO
(C) $\mathrm{O}_{2}{ }^{2-}$ and CO
(D) NO^{+}and O_{2}^{-}
Q. 10 In compounds $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathbf{P})$ and $\mathrm{Fe}(\mathrm{CO})_{5}(\mathbf{Q})$, the iron metal centre is bonded to
(A) C of CN^{-}in \mathbf{P} and C of CO in \mathbf{Q}
(B) N of CN^{-}in \mathbf{P} and C of CO in \mathbf{Q}
(C) C of CN^{-}in \mathbf{P} and O of CO in \mathbf{Q}
(D) N of CN^{-}in \mathbf{P} and O of CO in \mathbf{Q}
Q. 11 Among the following reactions, the one that produces achiral alcohol (after hydrolysis) is
(A)

(B)

(C)

(D)

Q. 12 The major product from the following reaction is

1) $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
$\xrightarrow{\text { 2) } \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}}$
2) $\mathrm{H}^{\oplus}, \mathrm{H}_{2} \mathrm{O}$, heat
$\mathrm{R}=$ tert-Butyl
(A)

(B)

(C)

(D)

Q. 13 The order of resonance energy for the following molecules is

(1)

(2)

(3)

(4)
(A) (1) $>$ (3) $>(2)>(4)$
(B) (1) $>(3)>(4)>(2)$
(C) $(1)>(4)>(2)>(3)$
(D) (1) $>(4)>(3)>(2)$
Q. 14 The molar enthalpy of vaporization for a liquid (normal boiling point $=78.3^{\circ} \mathrm{C}$) is $39 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the liquid has to boil at $25^{\circ} \mathrm{C}$, the pressure must be reduced to \qquad Torr (up to one decimal place).
(Given: $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 1 \mathrm{~atm}=760$ Torr)
Q. 15 For the process, $\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ at $0{ }^{\circ} \mathrm{C}$ and 1 atm , the correct statement is
(A) $\Delta S_{\text {system }}=0$
(B) $\Delta S_{\text {total }}>0$
(C) $\Delta S_{\text {total }}=0$
(D) $\Delta S_{\text {total }}<0$

END OF THE QUESTION PAPER

