

H: CHEMISTRY (COMPULSORY)

Q. 1 – Q. 5 carry one mark each.

- Q.1 The molecule having net 'non-zero dipole moment' is
 - (A) CCl₄
- (B) NF_3
- (C) CO₂
- (D) BCl₃
- Q.2 The Diels-Alder adduct from the reaction between cyclopentadiene and benzyne is

(C)

(D)

- Q.3 The number of possible enantiomeric pair(s) in HOOC-CH(OH)-CH(OH)-COOH is
- For the electrochemical reaction, $Cu^{2+}(aq) + Zn(s) \rightleftharpoons Cu(s) + Zn^{2+}(aq)$ Q.4 the equilibrium constant at 25 °C is 1.7×10^{37} . The change in standard Gibbs free energy (ΔG°) for this reaction at that temperature will be _____ kJ mol⁻¹ (up to one decimal place). (**Given:** $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$)
- Among the following diagrams, the one that correctly describes a zero order reaction Q.5 $(X \rightarrow product)$ is (Given: $[X]_0$ = initial concentration of reactant X; [X] = concentration of reactant X at time t and $t_{1/2}$ = half-life period of reactant X)

(A)

(B)

(C)

(D)

Q. 6 – Q. 15 carry two marks each.

- Q.6 If the radius of first Bohr orbit is 0.53 Å, then the radius of the third Bohr orbit is
 - (A) 2.12 Å
- (B) 4.77 Å
- (C) 1.59 Å
- (D) 3.18 Å
- Q.7 If 50 mL of 0.02 M HCl is added to 950 mL of H_2O , then the pH of the final solution will be
- Q.8 Stability of $[CrCl_6]^{3-}(\mathbf{X})$, $[MnCl_6]^{3-}(\mathbf{Y})$ and $[FeCl_6]^{3-}(\mathbf{Z})$ follows the order (**Given:** Atomic numbers of Cr = 24, Mn = 25 and Fe = 26)
 - (A) X > Y > Z
- (B) X < Y < Z
- (C) $\mathbf{Y} < \mathbf{X} < \mathbf{Z}$
- (D) $\mathbf{X} < \mathbf{Y} = \mathbf{Z}$
- Q.9 Among the following pairs, the paramagnetic and diamagnetic species, respectively, are
 - (A) CO and O_2^-
- (B) NO and CO
- (C) $O_2^{2^-}$ and CO
- (D) NO^+ and O_2^-
- Q.10 In compounds $K_4[Fe(CN)_6]$ (**P**) and $Fe(CO)_5$ (**Q**), the iron metal centre is bonded to
 - (A) C of CN in P and C of CO in Q
 - (B) N of CN in P and C of CO in Q
 - (C) C of CN in P and O of CO in Q
 - (D) N of CN in P and O of CO in Q
- Q.11 Among the following reactions, the one that produces achiral alcohol (after hydrolysis) is
 - (A) H_3C H + CH_3CH_2MgBr \longrightarrow
 - (B) H_2C Ph + CH_3CH_2MgBr \longrightarrow
 - (C) H_3C OEt + CH_3CH_2MgBr \longrightarrow
 - (D) H_3C CH_3 + CH_3CH_2MgBr \longrightarrow

Q.12 The major product from the following reaction is

- 1) SO₃, H₂SO₄

R = tert-Butyl

The order of resonance energy for the following molecules is Q.13

- (A) (1) > (3) > (2) > (4)

(B) (1) > (3) > (4) > (2)

(C) (1) > (4) > (2) > (3)

(D) (1) > (4) > (3) > (2)

The molar enthalpy of vaporization for a liquid (normal boiling point = 78.3 °C) is 39 kJ mol⁻¹. If Q.14 the liquid has to boil at 25 °C, the pressure must be reduced to

Torr (up to one decimal place).

(**Given:** $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$; 1 atm = 760 Torr)

- For the process, $H_2O(l) \rightleftharpoons H_2O(s)$ at 0 °C and 1 atm, the correct statement is

- (D) $\Delta S_{\text{total}} < 0$

END OF THE QUESTION PAPER