:l », FirstRanker.com

A Firstranker's choice .)
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

E R

3a)

FirstRanker.com

Firstranker's choice i)
www.FirstRanker.com www.FirstRanker.com

Suppose we want to design a system for storing employee records keyed using phone numbers. And
we want following queries to be performed efficiently:

1. Insert a phone number and corresponding information.

2. Search a phone number and fetch the information.

3. Delete a phone number and related information.
We can think of using the following data structures to maintain information about different phone
numbers.

1. Array of phone numbers and records.

2. Linked List of phone numbers and records.

3. Balanced binary search tree with phone numbers as keys.
4. Direct Access Table.

5.

Hashing is an improvement over Direct Access Table. The idea is to use hash function that converts a
given phone number or any other key to a smaller number and uses the small number as index in a table

called hash table.

b)

In linear probing, we linearly probe for next slot. For example, typical gap between two probes is 1
as taken in below example also.

Quadratic probing is an open addressing scheme in computer programming for resolving collisions
in hash tables—when an incoming data's hash value indicates it should be stored in an already-
occupied slot or bucket. Quadratic probing operates by taking the original hash index and adding
successive values of an arbitrary quadratic polynomial until an open slot is found.

Double hashing is a computer programming technique used in hash tables to resolve hashcollisions,
in cases when two different values to be searched for produce the same hash key. It is a popular
collision-resolution technique in open-addressed hash tables.

Since a hash function gets us a small number for a key which is a big integer or string, there is
possibility that two keys result in same value. The situation where a newly inserted key maps to an
already occupied slot in hash table is called collision and must be handled using some collision
handling technique.

Solution:
Keys 12, 18, 13, 2, 3,23, 5 and 15 are inserted in hash table as:

For key 12, h(12) is 12%10 = 2. Therefore, 12 is placed at 2nd index in the hash table.
For key 18, h(18) is 18%10 = 8. Therefore, 18 is placed at 8th index in the hash table.
For key 13, h(13) is 13%10 = 3. Therefore, 13 is placed at 3rd index in the hash table.
For key 2, h(2) is 2%10 = 2. However, index 2 is already occupied with 12. Therefore, using linear
probing, 2 will be placed at index 4 as index 2 and 3 are already occupied.
For key 3, h(3) 1s 3%10 = 3. However, index 3 is already occupied with 13. Therefore, using linear
probing, 3 will be placed at index 5 as index 3 and 4 are already occupied.
Similarly, 23, 5 and 15 will be placed at index 6, 7, 9 respectively.

www.FirstRanker.com

:l » FirstRanker.com

" F 's choice . .
I%EEPFEEEI{ www.FirstRanker.com www.FirstRanker.com

:l », FirstRanker.com

A Firstranker's choice .)
www.FirstRanker.com www.FirstRanker.com

Input :
in[] - {4: 8, 2, 5, 1, 8, 3, 7}
pOSt[] — {8.1 4, 5, 2, 6, 7, 3, 1}

OQutput : Rcot of below tree

www.FirstRanker.com

:l », FirstRanker.com

A Firstranker's choice .)
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

:l », FirstRanker.com

A Firstranker's choice .)
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

[’l » FirstRanker.com

J._ Firstranker's choice i)
www.FirstRanker.com www.FirstRanker.com

8)
a)

Steps to follow for insertion

Let the newly inserted node be w

1) Perform standard BST insert for w.

2) Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y
be the child of z that comes on the path from w to z and x be the grandchild of z that comes on the
path from w to z.

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be
4 possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the
possible 4 arrangements:

a) y is left child of z and x is left child of y (Left Left Case)

b) y is left child of z and x is right child of y (Left Right Case)

¢) y is right child of z and x is right child of y (Right Right Case)

d) y is right child of z and x is left child of y (Right Left Case)

Following are the operations to be performed in above mentioned 4 cases. In all of the cases, we only
need to re-balance the subtree rooted with z and the complete tree becomes balanced as the height of
subtree (After appropriate rotations) rooted with z becomes same as it was before insertion.

b)

Why do Binary Search Trees Have to be Balanced?

So why do binary search trees have to be balanced? I think the best way to understand the importance
is to walk through a base case. And remember that the key reason why a BST offers such great
performance is because it allows us to ignore irrelevant values. Thus decreasing the number of

comparisons a program has to perform to find a data element.

This may not seem like a huge deal for such a small data set. However what if you had millions of
elements that you had to search for? The performance gains of a BST are quite significant, which is
one of the reasons why binary search trees are considered such a vital tool for computer scientists.

9a)

Why Red-Black Trees?

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is the
height of the BST. The cost of these operations may become O(n) for a skewed Binary tree. If we
make sure that height of the tree remains O(Logn) after every insertion and deletion, then we can
guarantee an upper bound of O(Logn) for all these operations. The height of a Red-Black tree is
always O(Logn) where n is the number of nodes in the tree.

Comparison with AVL Tree

The AVL trees are more balanced compared to Red-Black Trees, but they may cause more rotations
during insertion and deletion. So if your application involves many frequent insertions and deletions,
then Red Black trees should be preferred. And if the insertions and deletions are less frequent and
search is a more frequent operation, then AVL tree should be preferred over Red-Black Tree.

www.FirstRanker.com

[’l » FirstRanker.com

A Firstranker's choice
b)
Properties of B-Tree
1) All leaves are at same level.
2) A B-Tree is defined by the term minimum degree ‘t’. The value of t depends upon disk block size.
3) Every node except root must contain at least t-1 keys. Root may contain minimum 1 key.
4) All nodes (including root) may contain at most 2t — 1 keys.
5) Number of children of a node is equal to the number of keys in it plus 1.
6) All keys of a node are sorted in increasing order. The child between two keys k1 and k2 contains
all keys in the range from k1 and k2.
7) B-Tree grows and shrinks from the root which is unlike Binary Search Tree. Binary Search Trees
grow downward and also shrink from downward.
8) Like other balanced Binary Search Trees, time complexity to search, insert and delete is O(Logn).

www.FirstRanker.com www.FirstRanker.com

Insertion

1) Initialize x as root.

2) While x is not leaf, do following

..a) Find the child of x that is going to to be traversed next. Let the child be y.

..b) If y is not full, change x to point to y.

..¢) If y is full, split it and change x to point to one of the two parts of y. If k is smaller than mid key
iny, then set x as first part of y. Else second part of y. When we split y, we move a key from y to its
parent X.

3) The loop in step 2 stops when x is leaf. x must have space for 1 extra key as we have been splitting
all nodes in advance. So simply insert k to x.

10 a)

Steps to build Huffman Tree

Input is array of unique characters along with their frequency of occurrences and output is Huffman
Tree.

1. Create a leaf node for each unique character and build a min heap of all leaf nodes (Min Heap is
used as a priority queue. The value of frequency field is used to compare two nodes in min heap.
Initially, the least frequent character is at root)

2. Extract two nodes with the minimum frequency from the min heap.

3. Create a new internal node with frequency equal to the sum of the two nodes frequencies. Make the
first extracted node as its left child and the other extracted node as its right child. Add this node to the
min heap.

4. Repeat steps#2 and #3 until the heap contains only one node. The remaining node is the root node
and the tree is complete.

www.FirstRanker.com

:l », FirstRanker.com

SHeid Bk 08 Hdim Hutrman Tf%w.FirstRanker.com www.FirstRanker.com
Traverse the tree formed starting from the root. Maintain an auxiliary array. While moving to the left child, write 0
to the array. While moving to the right child, write 1 to the array. Print the array when a leaf node is encountered.

Xt s | 1

0 4 0 ﬁl lejs[X
K[12 x x]¢\|n[x ol s Ix Moo

The codes are as follows:

character code-word

f e

= 10
d 101
a 1100
b 1101
e 111

www.FirstRanker.com

:l », FirstRanker.com

A Firstranker's choice .)
www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

