

Subj	l ect C	GUJARAT T BE - SEMESTER- ode: 2110015	ECHNOLOG I & II (NEW) EXA	FICAL UNIVE	RSITY INTER 2019 Date: 01/01/2020)
Time: 10:30 AM TO 01:30 PM Total Mar Instructions:					Total Marks: 70	0
	1. Q 2. N 3. F	Question No. 1 is con Make suitable assum Figures to the right :	mpulsory. Attemp nptions wherever 1 indicate full marks	t any four out of re necessary. s.	maining Six questio	ons.
Q-1	(a)	Objective Questions				Marks 07
	1.	If $A = \begin{bmatrix} 1 & -5 & 7 \\ 0 & 9 & 7 \\ 11 & 9 & 8 \end{bmatrix}$ then trace of the matrix A is				
		(a) 12	(b) 18	(c) 72	(d) 16	
	2. If $div u = 0$ then u is said to be					
		(a) Rotational	(b) Solenoidal	(c) Compressible	(d) None of these	
	3.	If A is 3×3 inver(a) 1	tible matrix then nu (b) 2	allity of A is (c) 0	(d) 3	
	4.	4. If matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ is having Eigen values 2,3,6 then Eigen values of A^{-1} are				
		(a) 2,3,6	(b) $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$	(c) $1, \frac{2}{3}, \frac{1}{3}$	(d) None of these	
	5.	Which set from $S_1 = \{(x, y, z) \in \mathbb{R}^3 z > 0\}$ and $S_2 = \{(x, y, z) \in \mathbb{R}^3 x = z = 0\}$ is subspace of \mathbb{R}^3 . (a) $S_2 = \{(x, y, z) \in \mathbb{R}^3 x = z = 0\}$ is subspace of \mathbb{R}^3 .				
	6	(a) S_1	$(0) S_2$	(c) S_1 and S_2	(d) None.	
	U	matrix A is (a) 3	(b) 1	(c) 5	(d) 0.	
	7 For what values of c, the vector $(2, -1, c)$ has norm 3?					
		(a) -3	(b) 3	(c) 0	(d) 2	
	(b)	Objective Questions 07				
	1.	If $F(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$ then Curl \vec{F} is				
		(a) 1	(b) 3	(c) 2	(d) 0	
	2.	For what value of k the vectors $v_1 = (-1,2,4)$, $v_2 = (-3,6,k)$ are Linearly Dependent?				
		(a) 12	(b) 7	(c) 4	(d) 1	
	3.	Which one is the characteristic equation of $= \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$?				
		(a) $\lambda^2 - 5\lambda + 4 =$	(a) $\lambda^2 - 5\lambda + 4 = 0$ (b) $\lambda^2 - 4\lambda - 5 = 0$			

www.FirstRanker.com

FirstRanker.com

5.

(c) $\lambda^2 + 4\lambda + 5 =$ www.FirstRanker.com

4. Which matrix represents one to one transformation

(a) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 7 \\ 4 & 14 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 7 \\ 1 & 14 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ Matrix $A = \begin{bmatrix} i & 2+3i \\ 2-3i & 0 \end{bmatrix}$ is

- (a) Symmetric (b) Skew-symmetric (c) Hermitian (d) None of these
- 6. If u and v are vectors in an Inner product space then
 - (a) $|\langle u, v \rangle| = ||u|| ||v||$ (b) $|\langle u, v \rangle| \le ||u|| ||v||$
 - (c) $|\langle u, v \rangle| \ge ||u|| ||v||$ (d) None of these.
- 7. Each vector in R^2 can be rotated in counter clockwise direction with 90° is followed by the matrix,

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Q-2 (a)
Find the Rank of a Matrix
$$A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 2 & 1 & -2 & -2 \\ -1 & 2 & -4 & 1 \\ 3 & 0 & 0 & -3 \end{bmatrix}$$
 03

- (b) Determine whether the given vectors $v_1 = (2, -1, 3); v_2 = (4, 1, 2); v_3 = 04$ (8, -1,8) Span R^3 .
- (c) For which values of 'a' will the following system have no solutions? 07Exactly one solution? Infinitely many solutions?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2$$

Q-3 (a) Define Singular Matrix. Find the inverse of the matrix A using Gauss Jordan 03 Method if it is invertible $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 5 & 7 \end{bmatrix}$ 04

(b) Express the matrix $A = \begin{bmatrix} 1 & 5 & 7 \\ -1 & -2 & -4 \\ 8 & 2 & 13 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix

(c) Fine a basis for the nullspace, row space and column space of the matrix 07

$$A = \begin{bmatrix} -1 & 2 & -1 & 5 & 6\\ 4 & -4 & -4 & -12 & -8\\ 2 & 0 & -6 & -2 & 4\\ -3 & 1 & 7 & -2 & 12 \end{bmatrix}$$

Also determine rank and nullity of the matrix.

Q-4 (a) Let
$$T_1: R^2 \to R^2$$
, $T_2: R^2 \to R^3$ be transformation given by
 $T_1(x, y) = (x + y, y)$ and $T_2(x, y) = (2x, y, x + y)$.
Show that T_1 is linear transformation and also find formula for $T_2 \circ T_1$.

(b) Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be the linear operator defined by 04

www.FirstRanker.com

FirstRanker.com

T(x, y) = (2x - y, w) + First Ranker Gomfor ker(T) + W + First Ranker.com

07

(c) Find a matrix P that diagonalize A, where $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$

And determine
$$P^{-1}AP$$
.

Q-5 (a) Find constants
$$a, b, c$$
 so that
 $v = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational.
(b) $z = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational.

- (b) Let the vector space P₂ have the inner product ⟨p,q⟩ = ∫¹₋₁ p(x)q(x) dx
 (i) Find ||p|| for p = x².
 (ii) Find d(p,q) of p = 1 and q = x.
- (c) Using Gram-Schmidt process orthonormalize the set of linearly independent 07 vectors $u_1 = (1, 0, 1, 1)$, $u_2 = (-1, 0, -1, 1)$ and $u_3 = (0, -1, 1, 1)$ of R^4 with standard inner product.

Q-6 (a) The temperature at any point in space is given by T = xy + yz + zx. 03 Determine the derivative of T in the direction of the vector $3\hat{i} - 4\hat{k}$ at the point (1,1,1).

- (b) Find the orthogonal projection of u = (2,1,3) on the subspace of R^3 04 spanned by the vectors $v_1 = (1,1,0), v_2 = (1,2,1).$
- (c) Verify Green's theorem for the field $F = (x y)\hat{i} + x\hat{j}$ and the region *R* 07 bounded by the unit circle *C*: $r(t) = (\cos t)\hat{i} + (sint)\hat{j}; \ 0 \le t \le 2\pi$

Q-7 (a) Find the co ordinate vector of $p = 2 - x + x^2$ relative to the basis 03 $S = \{p_1, p_2, p_3\}$ where $p_1 = 1 + x$, $p_2 = 1 + x^2$, $p_3 = x + x^2$

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A determine whether T has inverse. If so find $T^{-1}(x_1, x_2, x_3)$, where $A = \begin{bmatrix} 1 & 4 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ 04
- (c) Determine whether R^+ of all positive real numbers with operators 07 x + y = xy and $kx = x^k$ as a Vector Space.
