\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- I \& II (NEW) EXAMINATION - WINTER 2019

Subject Code: 2110015
Date: 01/01/2020
Subject Name: Vector Calculus And Linear Algebra
Time: 10:30 AM TO 01:30 PM
Total Marks: 70 Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q-1 (a) Objective Questions
4. If $A=\left[\begin{array}{rrr}1 & -5 & 7 \\ 0 & 9 & 7 \\ 11 & 9 & 8\end{array}\right]$ then trace of the matrix A is
(a) 12
(b) 18
(c) 72
(d) 16
5. If $\operatorname{div} u=0$ then u is said to be
(a) Rotational
(b) Solenoidal
(c) Compressible
(d) None of these
6. If A is 3×3 invertible matrix then nullity of A is
(a) 1
(b) 2
(c) 0
(d) 3
7. If matrix $A=\left[\begin{array}{rrr}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ is having Eigen values 2,3,6 then Eigen values of A^{-1} are
(a) $2,3,6$
(b) $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$
(c) $1, \frac{2}{3}, \frac{1}{3}$
(d) None of these
8. Which set from $S_{1}=\left\{(x, y, z) \in R^{3} / z>0\right\}$ and $S_{2}=\left\{(x, y, z) \in R^{3} / x=z=0\right\}$ is subspace of R^{3}.
(a) S_{1}
(b) S_{2}
(c) S_{1} and S_{2}
(d) None.

6 If Eigen values of 3×3 matrix A are 5,5,5 then Algebraic multiplicity of matrix A is
(a) 3
(b) 1
(c) 5
(d) 0 .

7 For what values of c , the vector $(2,-1, c)$ has norm 3 ?
(a) -3
(b) 3
(c) 0
(d) 2
(b) Objective Questions

1. If $F(x, y, z)=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then $\operatorname{Curl} \vec{F}$ is
(a) 1
(b) 3
(c) 2
(d) 0
2. For what value of k the vectors $v_{1}=(-1,2,4), v_{2}=(-3,6, k)$ are Linearly Dependent?
(a) 12
(b) 7
(c) 4
(d) 1
3. Which one is the characteristic equation of $=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$?
(a) $\lambda^{2}-5 \lambda+4=0$
(b) $\lambda^{2}-4 \lambda-5=0$

4. Which matrix represents one to one transformation
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & 7 \\ 4 & 14\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & 7 \\ 1 & 14\end{array}\right]$
(d) $\left[\begin{array}{ll}2 & 1 \\ 6 & 3\end{array}\right]$
5. Matrix $A=\left[\begin{array}{cc}i & 2+3 i \\ 2-3 i & 0\end{array}\right]$ is
(a) Symmetric
(b) Skew-symmetric
(c) Hermitian
(d) None of these
6. If u and v are vectors in an Inner product space then
(a) $|\langle u, v\rangle|=\|u\|\| \| v \|$
(b) $|\langle u, v\rangle| \leq\|u\|\| \| v \|$
(c) $|\langle u, v\rangle| \geq\|u\|\|v\|$
(d) None of these.
7. Each vector in R^{2} can be rotated in counter clockwise direction with 90° is followed by the matrix,
(a) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
(c) $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$

Q-2 (a)
Find the Rank of a Matrix $A=\left[\begin{array}{rrrr}1 & -1 & 2 & -1 \\ 2 & 1 & -2 & -2 \\ -1 & 2 & -4 & 1 \\ 3 & 0 & 0 & -3\end{array}\right]$
(b) Determine whether the given vectors $v_{1}=(2,-1,3) ; v_{2}=(4,1,2) ; v_{3}=$ $(8,-1,8) \operatorname{Span} R^{3}$.
(c) For which values of ' a ' will the following system have no solutions?

Exactly one solution? Infinitely many solutions?

$$
\begin{aligned}
x+2 y-3 z & =4 \\
3 x-y+5 z & =2 \\
4 x+y+\left(a^{2}-14\right) z & =a+2
\end{aligned}
$$

Q-3 (a) Define Singular Matrix. Find the inverse of the matrix A using Gauss Jordan
Method if it is invertible $\quad A=\left[\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & 0\end{array}\right]$
(b) Express the matrix $A=\left[\begin{array}{rrr}1 & 5 & 7 \\ -1 & -2 & -4 \\ 8 & 2 & 13\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix
(c) Fine a basis for the nullspace, row space and column space of the matrix

$$
A=\left[\begin{array}{rrrrr}
-1 & 2 & -1 & 5 & 6 \\
4 & -4 & -4 & -12 & -8 \\
2 & 0 & -6 & -2 & 4 \\
-3 & 1 & 7 & -2 & 12
\end{array}\right]
$$

Also determine rank and nullity of the matrix.

Q-4 (a) Let $T_{1}: R^{2} \rightarrow R^{2}, T_{2}: R^{2} \rightarrow R^{3}$ be transformation given by
$T_{1}(x, y)=(x+y, y)$ and $T_{2}(x, y)=(2 x, y, x+y)$.
Show that T_{1} is linear transformation and also find formula for $T_{2}{ }^{\circ} T_{1}$.

(c) Find a matrix P that diagonalize A, where $A=\left[\begin{array}{rrr}1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3\end{array}\right]$

And determine $P^{-1} A P$.

Q-5 (a) Find constants a, b, c so that $v=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \hat{k} \quad$ is irrotational.
(b) Let the vector space P_{2} have the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$
(i) Find $\|p\|$ for $p=x^{2}$.
(ii) Find $d(p, q)$ of $p=1$ and $q=x$.
(c) Using Gram-Schmidt process orthonormalize the set of linearly independent vectors $u_{1}=(1,0,1,1), u_{2}=(-1,0,-1,1)$ and $u_{3}=(0,-1,1,1)$ of R^{4} with standard inner product.

Q-6 (a) The temperature at any point in space is given by $T=x y+y z+z x$.
Determine the derivative of T in the direction of the vector $3 \hat{\imath}-4 \hat{k}$ at the point ($1,1,1$).
(b) Find the orthogonal projection of $u=(2,1,3)$ on the subspace of R^{3}
spanned by the vectors $v_{1}=(1,1,0), v_{2}=(1,2,1)$.
(c) Verify Green's theorem for the field $F=(x-y) \hat{\imath}+x \hat{\jmath}$ and the region R bounded by the unit circle C : $r(t)=(\cos t) \hat{\imath}+(\sin t) \hat{\jmath} ; 0 \leq t \leq 2 \pi$

Q-7 (a) Find the co ordinate vector of $p=2-x+x^{2}$ relative to the basis $S=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}=1+x, p_{2}=1+x^{2}, p_{3}=x+x^{2}$
(b) Let $T: R^{3} \rightarrow R^{3}$ be multiplication by A determine whether T has inverse. If so find $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)$, where $A=\left[\begin{array}{rrr}1 & 4 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 0\end{array}\right]$
(c) Determine whether R^{+}of all positive real numbers with operators $x+y=x y$ and $k x=x^{k}$ as a Vector Space.

