FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (New) EXAMINATION - WINTER 2019 Subject Code: 3130005 Date: 26/11/2019 Subject Name: Complex Variables and Partial Differential Equations Time: 02:30 PM TO 05:00 PM Total Marks: 70 Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.				
			Marks	
Q.1	(a)	Find the real and imaginary parts of $f(z) = \frac{3i}{2+3i}$.	03	
	(b)	State De-Movire's formula and hence evaluate $(1 + i\sqrt{3})^{100} + (1 - i\sqrt{3})^{100}$.	04	
	(c)	Define harmonic function. Show that $u(x, y) = \sinh x \sin y$ is harmonic function, find its harmonic conjugate $v(x, y)$.	07	
Q.2	(a)	Determine the Mobius transformation which maps $z_1 = 0, z_2 = 1, z_3 = \infty$ into $w_1 = -1, w_2 = -i, w_3 = 1$.	03	
	(b)	Define $logz$, prove that $i^{i} = e^{-(4n+1)\frac{\pi}{2}}$.	04	
	(c)	Expand $f(z) = \frac{1}{(z-1)(z+2)}$ valid for the region (i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$. OR	07	
	(c)	Find the image of the infinite strips (i) $\frac{1}{4} \le y \le \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the transformation $=\frac{1}{2}$. Show the region graphically.	07	
Q.3	(a)	Evaluate $\int_c (x - y + ix^2) dz$ where c is a straight line from $z = 0$ to $z = 1 + i$.	03	
	(b)	Check whether the following functions are analytic or not at any point, (i) $f(z) = 3x + y + i(3y - x)$ (ii) $f(z) = z^{3/2}$.	04	
	(c)	Using residue theorem, evaluate $\int_0^\infty \frac{dx}{(x^2+1)^2}$. OR	07	
Q.3	(a)	Expand Laurent series of $f(z) = \frac{1-e^z}{z}$ at $z = 0$ and identify the	03	
	(b)	singularity. If $f(z) = u + iv$, is an analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Ref(z) ^2 = 2 f'(z) ^2$.	04	
	(c)	$\begin{aligned} &(\partial_{x^2} + \partial_{y^2}) \operatorname{ref}(z) = 2 f(z) + 2 \\ &\text{Evaluate the following:} \\ &\text{i.} \qquad \int_c \frac{z+3}{z-1} dz \text{ where } c \text{ is the circle } (a) z = 2 (b) z = \frac{1}{2} \\ &\text{ii.} \qquad \int_c \frac{\sin z}{\left(z-\frac{\pi}{4}\right)^3} dz \text{ where } c \text{ is the circle } z = 1 . \end{aligned}$	07	

www.FirstRanker.com

FirstRanker.com

F	rstrar	Nker's choice www.FirstRanker.com www.FirstRanker.com	com
Q.4	(a)	Evaluate $\int_{0}^{2+4i} Re(z) dz$ along the curve $z(t) = t + it^{2}$.	03
	(b)	Solve $x^2p + y^2q = (x + y)z$.	04
	(c)		07
		radiation subject to the conditions (i) $\frac{\partial u}{\partial t} = 0$ for $x = 0$ and $x = l$;	
		(ii) $u = lx - x^2$ at $t = 0$ for all x .	
		OR	
Q.4	(a)	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{2x+3y}$.	03
	(b)	Solve $px + qy = pq$ using Charpit's method.	04
	(c)	Find the general solution of partial differential equation $u_{xx} = 9u_y$ using method of separation of variables.	07
Q.5	(a)	Using method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.	03
	(b)		04
	(c)	A string of length $L = \pi$ has its ends fixed at $x = 0$ and $x = \pi$. At time $t =$	07
		0, the string is given a shape defined by $f(x) = 50x(\pi - x)$, then it is	
		released. Find the deflection of the string at any time t.	
		OR	
Q.5	(a)		03
	(b)	Find the temperature in the thin metal rod of length l with both the ends insulated and initial temperature is $\sin \frac{\pi x}{l}$.	04
	(a)	Derive the one dimensional wave equation that several small vibration of an	07

(c) Derive the one dimensional wave equation that governs small vibration of an elastic string. Also state physical assumptions that you make for the system.

