\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130005
Date: 26/11/2019

Subject Name: Complex Variables and Partial Differential Equations
 Time: 02:30 PM TO 05:00 PM
 Total Marks: 70
 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Marks

Q. 1 (a) Find the real and imaginary parts of $f(z)=\frac{3 i}{2+3 i}$.
(b) State De-Movire's formula and hence evaluate

$$
(1+i \sqrt{3})^{100}+(1-i \sqrt{3})^{100}
$$

(c) Define harmonic function. Show that $u(x, y)=\sinh x \sin y$ is harmonic function, find its harmonic conjugate $v(x, y)$.
Q. 2 (a) Determine the Mobius transformation which maps $z_{1}=0, z_{2}=1, z_{3}=\infty$ into $w_{1}=-1, w_{2}=-i, w_{3}=1$.
(b) Define $\log z$, prove that $i^{i}=e^{-(4 n+1) \frac{\pi}{2}}$.
(c) Expand $f(z)=\frac{1}{(z-1)(z+2)}$ valid for the region
(i) $|z|<1$
(ii) $1<|z|<2$ (iii) $|z|>2$
(c) Find the image of the infinite strips (i) $\frac{1}{4} \leq y \leq \frac{1}{2}$
(ii) $0<y<\frac{1}{2}$ under the $\mathbf{0 7}$
transformation $=\frac{1}{z}$. Show the region graphically.
Q. 3 (a) Evaluate $\int_{c}\left(x-y+i x^{2}\right) d z$ where c is a straight line from $z=0$ to $z=\mathbf{0 3}$ $1+i$.
(b) Check whether the following functions are analytic or not at any point,
(i) $f(z)=3 x+y+i(3 y-x)$ (ii) $f(z)=z^{3 / 2}$.
(c) Using residue theorem, evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$.

OR

Q. 3 (a) Expand Laurent series of $f(z)=\frac{1-e^{z}}{z} \quad$ at $z=0$ and identify the singularity.
(b) If $f(z)=u+i v$, is an analytic function, prove that
(c) Evaluate the following:
i. $\quad \int_{c} \frac{z+3}{z-1} d z$ where c is the circle (a) $|z|=2$ (b) $|z|=\frac{1}{2}$.
ii. $\quad \int_{c} \frac{\sin z}{\left(z-\frac{\pi}{4}\right)^{3}} d z$ where c is the circle $|z|=1$.
Q. 4 (a) Evaluate $\int_{0}^{2+4 i} \operatorname{Re}(z) d z$ along the curve $z(t)=t+i t^{2}$.
(b) Solve $x^{2} p+y^{2} q=(x+y) z$.
(c) Solve the equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ for the condition of heat along rod without radiation subject to the conditions (i) $\frac{\partial u}{\partial t}=0$ for $x=0$ and $x=l$;
(ii) $u=l x-x^{2}$ at $t=0$ for all x.

OR

Q. 4 (a) Solve $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=e^{2 x+3 y}$.
(b) Solve $p x+q y=p q$ using Charpit's method.
(c) Find the general solution of partial differential equation $u_{x x}=9 u_{y}$ using method of separation of variables.
Q. 5 (a) Using method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$. 03
(b) Solve $z(x p-y q)=y^{2}-x^{2}$.

04
(c) A string of length $L=\pi$ has its ends fixed at $x=0$ and $x=\pi$. At time $t=$ 0 , the string is given a shape defined by $f(x)=50 x(\pi-x)$, then it is released. Find the deflection of the string at any time t.

OR

Q. 5 (a) Solve $p^{3}+q^{3}=x+y$.
(b) Find the temperature in the thin metal rod of length l with both the ends
insulated and initial temperature is $\sin \pi x / l$.
(c) $\begin{aligned} & \text { Derive the one dimensional wave equation that governs small vibration of an } \\ & \text { elastic string. Also state physical assumptions that you make for the system. }\end{aligned}$

