

Enrolment No.___

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (New) EXAMINATION – WINTER 2019						
Subject Code: 3130109 Date: 30/11/2						
Subject Name: Thermodynamics for Aeronautical Engineering						
Time: 02:30 PM TO 05:00 PM Total Marks: 70						
Instructi						
		mpt all questions. Re suitable assumptions wherever necessary.				
		res to the right indicate full marks.				
	0					
Q.1	(a) (b)	Difference between extensive property and intensive property.	03			
	(b)	Give the comparisons of microscopic and macroscopic point of view of Thermodynamics.	04			
	(c)	Derive an expression for efficiency of Diesel cycle in terms of the	07			
	(0)	compression ratio r, cut-off ρ and γ .	01			
Q.2	(a)	Write steady flow energy equation in case of boiler, turbine and	03			
		condenser				
	(b)	Prove that "Energy is a property of a system".	04			
	(c)	In a gas turbine unit, the gas flow through the turbine is 15 Kg/Sec.	07			
		and the Power developed by the turbine is 12000 KW. The enthalpies of gases at inlet and Outlet are 1260 KJ/Kg and 400 KJ/Kg				
		respectively, and the velocity of gases at the Inlet and outlet are 50				
		m/s and 110 m/s respectively. Calculate				
		(i) The rate at which Heat is rejected to the turbine, and				
		(ii) The area of the inlet pipe given that the Specific volume of				
		gases at inlet is 0.45 m ³ /kg.				
	(c)	OR Derive equation for (i) filling the tank and (ii) emptying the tank	07			
Q.3	(c) (a)	Identify the reasons for the impracticality of Carnot cycle	07			
X .0	(b)	State and explain the Perpetual motion machines of Second Kind	04			
	(c)	State Kelvin-Plank Statement of Second Law of thermodynamics	07			
		and show that violation of Kelvin-Plank statement leading to				
		violation of Clausius statement.				
0.0		OR				
Q.3	(a)	Write the equation for entropy change of reversible and	03			
	(b)	irreversible process and cycles with usual notations. Explain: Entropy principle.	04			
	(b) (c)	Two Carnot engines work in series between the source and sink	07			
	(0)	temperatures of 550 K and 350 K. If both engines develop equal	01			
		power determine the intermediate temperature.				
Q.4	(a)	Draw the T-s diagram of ideal Rankine vapour power cycle	03			
		showing name of component for each process and write the				
		energy equation for each component neglecting kinetic and				
	(b)	potential energy Compare Otto, Diesel and Dual cycle for	04			
	(b)	Compare Otto, Diesel and Dual cycle for i) Same compression ratio and heat supplied	04			
		ii) Same Max. Pressure and temperature				
		,				

FirstRanker.com

Firstran	ker's d	choice	
	(c)	www.FirstRanker.com www.FirstRanker.com A steam turbine power plant operating on ideal Rankine cycle, receives steam at 20bar, 300°C at the rate of 3 Kg/S and it exhausts at 0.1bar. Calculate the followings: i) Net power output ii) Steam rate iii) Heat rejection in condenser in KW iv) Rankine Cycle efficiency.	07
Q.4	(a)	Write comparison of Carnot and Rankine cycle.	03
Q. 1	(a) (b)	Derive an air-standard efficiency expression for Brayton cycle in terms of r_p and γ	03 04
	(c)	In an IC Engine working with the Otto cycle, the cylinder diameter is 250 mm and a stroke is 375mm. If the clearance volume is 0.00263 m^3 , and the initial pressure and temperature are 1bar and 50° C, calculate the air standard efficiency and mean effective pressure of the cycle. The maximum cycle pressure is limited to 25bar.	07
Q.5	(a)	Give causes of irreversibility in detail.	03
	(b)	Draw the brayton cycle diagram with ideal regeration, reheating and intercooling. Also draw the T-s diagram.	04
	(c)	Derive Maxwell relations and various TdS equations.	07
		OR	
Q.5	(a)	Explain in short: Exergy	03
	(b)	Define and Explain Helmholtz & Gib's function	04
	(c)	Write down Jet engine components. Derive expression for component efficiency of any one component	07
*****	*****	***************************************	****