P. F.i	st	Ranker.com Enrolment No.	
First	trank	er GUIARAT TEGHNOLOGICAL UNIVERSITAnker	com
		BE - SEMESTER- III (New) EXAMINATION – WINTER 2019	com
Sul	biect	Code: 3130306 Date: 3/12/20)19
Sul	hiect	Name: Fundamentals of Digital Electronics	
Tir	Time: 02:30 PM TO 05:00 PM Total Marks:		
Inst	ructio		• 70
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	Maril
			Iviai K
Q.1	(a)	Subtract the following binary numbers by the 2's and 1's complement method. 10110-1011	03
	(b)	Encode data bits 1011 into the 7-bit even parity Hamming code. Find and correct error from 7-bit hamming code given below. 1110110	04
	(c)	Explain TTL and CMOS realization of AND and OR gate.	07
Q.2	(a)	For a two input AND & OR gate, Determine its output waveform in relations	03
		to input waveform A & B. Input A has frequency 2Hz with duty cycle 50%	
		and Input B has frequency 1Hz with duty cycle 70%.	
	(b)	Explain EX-OR and EX-NOR gate using its truth table, Symbol, and logic	04
	(\cdot)	diagram.	07
	(C)	Reduce the expression $f = \sum m(1,4,7,10,13) + a(5,14,15)$ using k-map and implement the minimal expression in universal logic	07
		OR	
	(c)	Find the minimal expression for $f = \prod M(2, 8, 9, 10, 11, 12, 14)$ using tabular	07
	(0)	method.	07
Q.3	(a)	Reduce the Boolean Expression: $f = AB + \overline{AC} + A\overline{B}C(AB + C)$.	03
-	(b)	Design 4-input priority encoder.	04
	(c)	Design Half adder and Half subtractor using universal logic.	07
		OR	
Q.3	(a)	Draw logic diagram of 3-8 line decoder.	03
	(b)	Find out Minterms and Maxterms for Boolean expression:	04
	()	f = A(A + B)(A + B + C).	07
	(C)	Implement the logic function $F = \sum m(0,1,2,3,4,10,11,14,15)$ using a 16:1 MUV and 8:1 MUV	07
~ .			
Q.4	(a)	Explain 1-bit Magnitude comparator with logic diagram.	03
	(b)	Design full adder using PAL circuit.	04
	(C)	Design a 4-bit Binary to Gray Code converter with logic diagram.	07
04	(a)	Write comparison of programmable logic devices	03
~ ··	(b)	Design full subtractor using PLA circuit.	04
	(c)	Explain design of a synchronous 3-bit Up-Down counter using J-K flip-flops.	07
Q.5	(a)	Write comparison between synchronous and asynchronous sequential circuits.	03
	(b)	Describe master-slave pulse triggered D-flip-flop.	04
	(c)	Explain edge-triggered J-K flip-flop and T-flip-flop.	07
~ -		OR	
Q.5	(a)	Write excitation tables of S-R, J-K, D, and T flip-flop.	03
	(D) (a)	Describe Serial III, Parallel Out Snift register.	04 07
	(0)	negative edge triggered I-K flip-flops	0/

F