BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Name: Fundamentals of Digital Electronics Time: 02:30 PM TO 05:00 PM Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Marks

Q. 1 (a) Subtract the following binary numbers by the 2's and 1's complement method. 03 10110-1011
(b) Encode data bits 1011 into the 7-bit even parity Hamming code. Find and 04 correct error from 7-bit hamming code given below. 1110110(c) Explain TTL and CMOS realization of AND and OR gate.07
Q. 2 (a) For a two input AND \& OR gate, Determine its output waveform in relations 03 to input waveform A \& B. Input A has frequency 2 Hz with duty cycle 50% and Input B has frequency 1 Hz with duty cycle 70%.
(b) Explain EX-OR and EX-NOR gate using its truth table, Symbol, and logic 04diagram.
(c) Reduce the expression $\mathrm{f}=\sum m(1,4,7,10,13)+d(5,14,15)$ using k-map and 07 implement the minimal expression in universal logic.
OR
(c) Find the minimal expression for $f=\Pi M(2,8,9,10,11,12,14)$ using tabular 07 method.
Q. 3 (a) Reduce the Boolean Expression: $f=A B+\overline{A C}+A \bar{B} C(A B+C)$. 03
(b) Design 4-input priority encoder. 04
(c) Design Half adder and Half subtractor using universal logic. 07
OR
Q. 3 (a) Draw logic diagram of 3-8 line decoder. 03
(b) Find out Minterms and Maxterms for Boolean expression: 04
$f=A(\bar{A}+\bar{B})(A+B+C)$.
(c) Implement the logic function $\mathrm{F}=\sum m(0,1,2,3,4,10,11,14,15)$ using a $16: 1$ 07 MUX and 8:1 MUX.
Q. 4 (a) Explain 1-bit Magnitude comparator with logic diagram. 03
(b) Design full adder using PAL circuit. 04
(c) Design a 4-bit Binary to Gray Code converter with logic diagram. 07
OR
Q. 4 (a) Write comparison of programmable logic devices. 03
(b) Design full subtractor using PLA circuit. 04
(c) Explain design of a synchronous 3-bit Up-Down counter using J-K flip-flops. 07
Q. 5 (a) Write comparison between synchronous and asynchronous sequential circuits. 03
(b) Describe master-slave pulse triggered D-flip-flop. 04
(c) Explain edge-triggered J-K flip-flop and T-flip-flop. 07
OR
Q. 5 (a) Write excitation tables of S-R, J-K, D, and T flip-flop. 03
(b) Describe Serial In, Parallel Out shift register. 04
(c) Design and explain Asynchronous two bit ripple up and down counter using 07negative edge triggered J-K flip-flops.

