

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130507 Subject Name: Chemical Engineering Thermodynamics I Time: 02:30 PM TO 05:00 PM Instructions: Total Marks:			2019	
			70	
motru	1.	Attempt all questions.		
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1		,	03	
	(b) Distinguish between intensive and extensive properties with suitable example.	04	
	(c	Explain the P-V-T behavior of pure fluids with the help of neat diagram.	07	
Q.2			03	
	(b	,	04	
	(c	State first law of thermodynamics? Derive the expressions for 1 st law of thermodynamics for non-flow process. OR	07	
	(c		07	
Q.3	(a) State various equations of state for real gases.	03	
	(b		04	
		i. Sensible heat		
		ii. Latent heat		
		iii. Standard heat of formation		
	(0	iv. Standard heat of formationExplain about Van- Der-Waals equation of state.	07	
	(C	OR	U/	
Q.3	(a		03	
Ç.	(b	, ==	04	
	`	i. Clausius Statement		
		ii. Kelvin – Planck Statement		
	(c	Discuss effect of temperature on heat of reaction and derive necessary equation.	07	
Q.4	(a	ullet	03	
	(b	,	04	
	(c	Explain and prove Carnot's principle with neat sketch. OR	07	
Q.4		·	03	
	(b) Using Maxwell's equation prove that :	04	

 $dH = CpdT + V(1 - \beta T)dP$

Where β is coefficient of volume expansion

FirstRanker.com

Firstranker's Derive the expression for the recommendation of the stranker of the following processits state from (P_1, V_1, T_1) to (P_2, V_2, T_2) for following process-

- 1) Constant volume process.
- 2) Constant pressure process.
- 3) Isothermal process.
- 03 Q.5 (a) Assuming air is mixture of 21 % oxygen and 79% nitrogen by volume calculate entropy of 1 kmol air relative to pure oxygen and nitrogen, all at the same temperature and pressure.
 - **(b)** Discuss briefly about single and multistage compressors. 04
 - (c) What is the criterion of exactness? Using the criterion of exactness derive 07 the Maxwell equation.

OR

- Q.5 (a) Discuss any three major desirable properties of good refrigerant. 03
 - **(b)** Write a short note on Thermodynamic Diagrams. 04
 - A refrigeration machine operating at a condenser temperature at 290 K **07** needs 1 kW of power per ton of refrigeration.

Determine:

- 1) Coefficient Of Performance(COP)
- 2) Heat rejected to the condenser
- 3) The lowest temperature that can be maintained.

Given that: 1 Ton of refrigeration = 12660 kJ/h=3516.67 W

www.FirstRanker.com