GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130507
Date: 30/11/2019

Subject Name: Chemical Engineering Thermodynamics I
 Time: 02:30 PM TO 05:00 PM
 Total Marks: 70

 Instructions:1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Write short note on "Gibb's phase rule". 03
(b) Distinguish between intensive and extensive properties with suitable 04 example.(c) Explain the P-V-T behavior of pure fluids with the help of neat diagram.07
Q. 2 (a) Distinguish between state function and path function. 03
(b) Explain about principle of corresponding states. 04
(c) State first law of thermodynamics? Derive the expressions for $1^{\text {st }}$ law of 07thermodynamics for non-flow process.
OR
(c) Heat is transferred to 10 kg of air which is initially at 100 kPa and 300 K 07 until its temperature reaches 600 K . Determine the change in internal energy and change in enthalpy, amount of heat supplied and the work done for a Constant volume process. Assume air as an ideal gas. Given that: $\mathrm{R}=8.314 \mathrm{~kJ} / \mathrm{kmol} \mathrm{K}, \mathrm{Cp}=29.099 \mathrm{~kJ} / \mathrm{kmol} \mathrm{K}, \mathrm{Cv}=20.785 \mathrm{~kJ} / \mathrm{kmol}$ K and molecular weight of air $=29$
Q. 3 (a) State various equations of state for real gases. 03
(b) Define the following 04i. Sensible heatii. Latent heatiii. Standard heat of combustioniv. Standard heat of formation
(c) Explain about Van-Der-Waals equation of state. 07
OR
Q. 3 (a) Discuss Virial equations and their applications. 03
(b) Define the statements for the second law of thermodynamics 04 i. Clausius Statement ii. Kelvin - Planck Statement
(c) Discuss effect of temperature on heat of reaction and derive necessary 07 equation.
Q. 4 (a) Write a short note on Third law of thermodynamics. 03
(b) Describe absorption refrigeration cycle. 04
(c) Explain and prove Carnot's principle with neat sketch. 07
OR
Q. 4 (a) Write a short note on Jet ejector. 03
(b) Using Maxwell's equation prove that: 04
$\mathrm{dH}=\mathrm{CpdT}+\mathrm{V}(1-\beta \mathrm{T}) \mathrm{dP}$Where β is coefficient of volume expansion
 its state from $\left(\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)$ to $\left(\mathrm{P}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)$ for following process-
1) Constant volume process.
2) Constant pressure process.
3) Isothermal process.
Q. 5 (a) Assuming air is mixture of 21% oxygen and 79\% nitrogen by volume 03calculate entropy of 1 kmol air relative to pure oxygen and nitrogen, allat the same temperature and pressure.
(b) Discuss briefly about single and multistage compressors. 04
(c) What is the criterion of exactness? Using the criterion of exactness derive 07the Maxwell equation.
OR
Q. 5 (a) Discuss any three major desirable properties of good refrigerant. 03
(b) Write a short note on Thermodynamic Diagrams. 04
(c) A refrigeration machine operating at a condenser temperature at 290 K 07needs 1 kW of power per ton of refrigeration.
Determine:
4) Coefficient Of Performance(COP)
5) Heat rejected to the condenser
6) The lowest temperature that can be maintained.
Given that: 1 Ton of refrigeration $=12660 \mathrm{~kJ} / \mathrm{h}=3516.67 \mathrm{~W}$
