www.FirstRanker.com

www.FirstRanker.com

Seat No.:

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130508

Date: 3/12/2019

Subject Name: Material & Energy Balance Computation Time: 02:30 PM TO 05:00 PM **Total Marks: 70 Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

Q.1	(a)	has an average molecular weight of 31. Calculate the partial pressure	
	(b)	of nitrogen. The flow rate of water through a pipe is reported as 20 ft ³ / min. Convert the volumetric flow rate into the mass flow rate in kg/sec. Density of water is 1 gm/cc.	04
	(c)	Discuss the importance of recycling and bypassing operation	07
Q.2	(a)	A sample of well water contains 140 gm/m ³ Ca ⁺ ions and 345 gm/m ³ Na ⁺ ions. Express the hardness of the water sample in terms of equivalent of CaCO ₃ in gm/m ³ . (Atomic weight of Ca = 40, Na = 23 ,C = 12 and O = 16)	03
	(b)	Describe the material balance of drying operation.	04
	(c)	A solution of NaCl in water contains 15 % NaCl (by mass) at 335 K.	07
		The density of the solution is 1.127 kg/lit. Determine the molarity, normality and molality of the solution.	
		OC OR	
	(c)	A gaseous mixture has the following composition by volume. $SO_2 = 6$ %, $O_2 = 9\%$, $CO = 1.5\%$ and $CO_2 = 4.5\%$ and remaining is nitrogen. Calculate (a) the density of gas mixture at a temperature of 425 K and at a pressure of 202.65 kPa g and (b) Composition by weight.	07
Q.3	(a)	Describe the material balance of liquid – liquid extraction.	03
Q	(a) (b)	In a paper mill, a wash liquor containing 3% (by weight) solid is concentrated in an evaporator to yield a lye containing 30% (by weight) solids. Calculate the quantity of water evaporated per 100 kg of feed?	03
	(c)	A coke is known to contain 90% carbon and 10% non combustible ash by weight. (a) Calculate the moles of oxygen are theoretically required to burn 100 kg of coke completely? (b) If 50 % excess air is supplied calculate the analysis of gases at the end of combustion.	07

www.FirstRanker.com

03

OR

Q.3 (a) List out the classification of material balance problems.

FirstRanker.com

- (b) The orsat analysis of a flue gas is $CO_2 = 12.7$ %, $O_2 = 7.1$ % $N_2 = 04$ 80.2 %. Determine the percentage excess air used in combustion. The nitrogen present in the flue gas is contributed by air only.
- (c) In a production of chlorine gas by oxidation of hydrochloric acid gas, air is used 30 % in excess of that theoretically required. Based on 4 kmol HCl, Calculate; (a) The weight ratio of air to HCl gas in feed.
 (b) If oxidation is 85 % complete, calculate the composition off product stream on mole basis.
- Q.4 (a) Calculate the standard heat of reaction of the following reaction 03 using std. heat of formation data.

 $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O_0$

(1) (8)	(g) (r)
Component	$\Delta H_{f}^{0} = kJ/mol @25^{\circ}C$
C ₅ H _{12 (l)}	-173.49
CO _{2 (g)}	-393.51
H ₂ O (1)	-285.83

- (b) A feed to a continuous fractionating column (Distillation column) 04 analyses by weight 28 % benzene and 72 % toluene. The analysis of the distillation shows 52 % (weight) benzene and 5 % (weight) benzene was found in the bottom product. Calculate the amount of distillation and bottom product per 1000 kg of feed per hour. Also calculate the recovery of benzene.
- (c) Pure CO is mixed with 100 % excess air and burnt. Only 80% of CO is burns. The reactants are at 100 °C and the products are at 300 °C. Estimate the amount of heat added or removed per kmol of CO fed to the reactor. Data: Mean molal specific heat between 25 °C and T °C in kJ/kmol K are as follows.

e in ky/killor ik die ds follows.								
Gas	T = 100 °C	T = 300 °C						
CO	29.22	30.61						
CO ₂	-	43.77						
O ₂	29.64	43.77						
N_2	29.17	29.66						

Standard heat of formation at 25 °C are: CO = -110524 kJ/kmol and CO₂ = -393514 kJ/kmol

OR

Q.4 (a) Calculate the enthalpy change (std. heat of reaction) between 03 reactants and products if both are at 298.15 K and if 10 mol of formaldehyde is produced according to the following reaction. CH = +Q = > HCHQ = +HQ

$$CH_{4_{(g)}} + O_{2_{(g)}} \rightarrow HCHO_{(g)} + H_2O_{(g)}$$

Component	$\Delta H_{\rm C}^0 = kJ/mol \ @25^{\circ}{\rm C}$	
CH ₄ (g)	-890.65	
HCHO	-563.46	

(b) The spent acid from a nitrating process contains 15% HNO₃, 65% 04 H₂SO₄ and 20% H₂O by weight. This acid is to be concentrated to contain 25 % HNO₃ and 58 % H₂SO₄ by addition of concentrated sulphuric acid containing 93% H₂SO₄ and concentrated nitric acid

07

containing 90% HNO₃. Calculate the weights of spent acid, concentrated sulphuric acid and concentrated nitric acid that must be

www.FirstRanker.com

combined to obtain 100 kg of the desired mixture. (c) A gas mixture has the following composition on mole basis. $CH_4 = 84$, $C_2H_6 = 13\%$ and $N_2 = 3\%$. Calculate the energy to be added to heat the 15 kmol of gas mixture from 298 K to 523 K using heat capacity data given below. $C_P^0 = a + bT + cT^2 + dT^3$

where C_p^{0} is in kJ/kmol K or J/mol K									
Componentab x 10^3 c x 1				d x 10 ⁹					
CH _{4 (g)}	19.25	52.11	11.97	- 11.32					
C2H6 (g)	5.41	178.19	- 67.38	8.72					
$N_{2\ (g)}$	29.59	- 5.41	13.18	- 4.97					

- Q.5 (a) Define. (a) Adiabatic flame temperature (2) Latent heat 03 (c) Excess air requirement.
 - (b) A liquid fuel is found to contain 83% C, 15% hydrogen and 2%
 O4 Sulphur. Calculate the net calorific value (NCV) of liquid sample at 298 K.

Data: Gross calorific value of fuel at 298 K is 45071 kJ/kg of liq fuel.

Latent heat of water vapour at 298K =2442.5 kJ/kg.

(c) Discuss classification of fuels and define calorific values of fuels. 07 OR

Q.5 (a) Define. (1) Heat capacity (2) Calorie (3) Humidity

(b) Calculate the calorific value at 298K of a sample of fuel oil having C/H ratio of 9.33 (by weight) and containing sulphur to the extent of 1.3 % by weight.

Data:

FirstRanker.com

The Gross calorific value (GCV) of fuel oil at 298 K = 41785 kJ/kg. Latent heat of water vapour (25 °C) = 2442.5 kJ/kg

(c) Discuss Ultimate analysis and proximate analysis of coal.

07

03