\qquad

Subject Name: Network Theory

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
Q. 1 (a) Draw Ideal and Practical Current and Voltage source 03characteristics. In what respect practical current andvoltage sources are different from ideal current andvoltage sources.
(b) Derive current, voltage, power and energy equations of 04two terminal elements Resistor, Inductor and Capacitor.
(c) Determine the current in 4Ω resistor using mesh analysis 07 for the network shown in figure 1.
Q. 2 (a) Derive the conduction of maximum power transfer for the 03 variable resistance as a load circuit.
(b) What is equivalent circuit of the charged and uncharged 04 inductor and capacitor at $\mathrm{t}=0+$ and $\mathrm{t}=\infty$.
(c) Determine the value of I_{1} using superposition theorem for the circuit shown in figure 2.
OR
(c) Find the current in 4Ω resistor for the circuit shown in 07 figure 3 using Thevenin's theorem and also find maximum power dissipation by the 4Ω.
Q. 3 (a) Define the time-constant of RL and RC networks and 03explain the significance of the time-constant.(b) In the network shown in figure 4, the switch k is moved04from position 1 to 2 at $t=0$, steady state having previouslybeen attained. Determine the current $\mathrm{i}(\mathrm{t})$ for the $\mathrm{t} \geq 0$.(c) In the network shown in figure 5, the switch k is changedfrom position 1 to 2 at $t=0$. Find values of $i, d i / d t$ and$\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0+$ if $\mathrm{R}=1000 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=0.1 \mu \mathrm{~F}$ and $\mathrm{V}=100 \mathrm{~V}$.
Q. 3 (a) In the network shown in figure 6, the switch k is closed at03$t=0$, a steady state having previously been attained. Find$i(t)$ for $t \geq 0$.
(b) An exponential voltage $\mathrm{v}(\mathrm{t})=4 \mathrm{e}^{-3 \mathrm{t}}$ is applied at time $\mathrm{t}=0$ to 04a series R-L circuit consisting of a resistor $\mathrm{R}=0.5 \Omega$ andinductor $\mathrm{L}=0.25 \mathrm{H}$ as shown in figure 7 Obtain theexpression of current $\mathrm{i}(\mathrm{t})$ for $\mathrm{t} \geq 0$. Assume zero currentthrough the inductor before switching.
(c) Obtain z-parameters for the network shown in figure 8. 07
Q. 4 (a) Write the procure to obtain Thevenin's equivalent voltage 03and resistance for the different types of network.
(b) In the network shown in figure 9 the switch k is moved 04from position a to b at $\mathrm{t}=0$, a steady state existing in

FirstRankerksome
(c) Find the Norton's equivalent circuit for the network
shown in figure 10 and obtain current in 10Ω (load resistor).

OR

Q. 4 (a) Find the Laplace transform of the signal $f(t)=e^{-a t} \sin (w t)$.

03
(b) Obtain the voltage across the capacitor in the LC circuit shown in figure 11 using Laplace transformation technique, if initial voltage across capacitor is 2 V .
(c) Using nodal analysis determine the current I in the circuit shown in figure 12.
Q. 5 (a) Define (1) Oriented Graph (2) Tree and (3) Incidence
(b) Define symmetry and reciprocity conditions for two port network also derive conditions of symmetry and reciprocity of the two port network in terms of Z parameters.
(c) For the circuit shown in figure 13 draw the oriented graph and obtain the (1) Incidence matrix (2) f-cutset matrix and (3) tieset matrix.

OR

Q. 5 (a) List out the necessary and sufficient conditions for positive real function.
(b) Determine the inductance between the terminals for three coil shown in figure 14.
(c) For the circuit shown in figure 15 draw the oriented graph 07 and obtain the (1) Incidence matrix (2) f-cutset matrix and (3) tieset matrix.

Figure 1

Figure 3
www.FirstRanker.com

Figure 5

Figure 7

Figure 6

Figure 8

Figure 9

Figure 11

Figure 13

Figure 10

Figure 12

Figure 14
www.FirstRanker.com

