Subject Code: 3131404

Date: 26/11/2019

Subject Name: Food Engineering Thermodynamics Time: 02:30 PM TO 05:00 PM

 Instructions:1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Standard Steam Tables and normal range Psychrometric Chart can be used
Q. 1 (a) Define ideal and real gases. Why do real gases deviate from ideal behaviour? A sealed container contains air at $87^{\circ} \mathrm{C}$ and 1 bar. The container was evacuated using a vacuum pump so that the vacuum inside the container is recorded as 18 kPa . Calculate the final temperature \& absolute pressure inside the container.
(b) Write down Van der Waal's equation of state for real gases. Two hundred moles of CO_{2} gas is stored in a 2 liter closed container at $-13{ }^{\circ} \mathrm{C}$. Calculate the pressure of the gas in kPa using Van der Waal's gas equation. Take $\mathrm{a}=0.360 \mathrm{~Pa}\left(\mathrm{~m}^{3} / \mathrm{mole}\right)^{2}, \mathrm{~b}=4.28 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mole}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \mathrm{K}$
(c) Match Column-I with most appropriate entity from Column-II and reconstruct a matched table.

Column-I	Column-II
Vacuum of 380 mm Hg equals	(i) Van der Waal's gas equation (ii) $\mathrm{C}_{\mathrm{p}} \sim \mathrm{C}_{\mathrm{v}}$ is >0 (iii) NkT (iv) 14 g (v) $77^{\circ} \mathrm{F}$
Ideal gases	
Real gases	
Specific gas constant for O_{2} gas is	
For ideal gases PV is equal to	(vi) 56 g (vii) $\overline{\mathrm{R}} \mathrm{T}$ (viii) < 0 for real gases (ix) Sublimation (x) 14.67 kPa (xi) $259.8 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
Mass of 2 mole N_{2} gas at NTP is	
$25^{\circ} \mathrm{C}$ is equal to	
Freeze drying	

Q. 2 (a) Explain Zeroth law off thermodynamics. List different types of thermometers. 03
(b) A gas at 5 bar and $177^{\circ} \mathrm{C}$ kept in a container of 200 liter volume. It is cooled $\mathbf{0 4}$ isobarically to $27^{\circ} \mathrm{C}$. Calculate the following in kJ :
(a) Heat transferred.
(b) Change in internal energy.
[Take $\mathrm{Cp}=40 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{k}$]
(c) Derive SFEE for a fluid stream entering and leaving a thermodynamic system in terms of work and energy transfer per unit mass. Specify the assumptions made.

OR

(c) Explain how first law of thermodynamics can be applied for closed systems operating in a cyclic and non-cyclic process. Prove that " $\mathrm{TV}^{\gamma-1}=$ constant" for an ideal gas undergoing a reversible process.

(i) Sensible heating
(ii) Dehumidification
(iii) Humidification
(b) Atmospheric air for Anand city on a certain day in October records the following:
Temperature $=32{ }^{\circ} \mathrm{C}$
Barometric Pressure $=760 \mathrm{~mm} \mathrm{Hg}$
WBT $=27^{\circ} \mathrm{C}$
Using Psychrometric Chart determine:
(i) DPT in ${ }^{\circ} \mathrm{C}$
(ii) $\% \mathrm{RH}$
(iii) DBT in ${ }^{\circ} \mathrm{C}$
(iv) Specific humidity in $\mathrm{kg} / \mathrm{kg}$ d.a
(c) Draw a labeled ' $\mathrm{P}-\mathrm{V}$ diagram' of pure water showing zones of thermodynamic interest. Determine the following using Steam Tables for saturated steam at 10 bar pressure:
(i) Saturation temperature in Kelvin
(ii) Specific Entropy in $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$
(iii) Latent heat of vaporization in $\mathrm{kJ} / \mathrm{kg}$
(iv) Enthalpy of saturated vapours in kJkg .

OR

Q. 3 (a) Indicate the following processes on psychrometric chart for moist air:
i. Sensible cooling
ii. Dehumidification and heating
iii. Cooling and dehumidification
(b) Atmospheric air on a certain day has the following parameters:

Temperature $=40^{\circ} \mathrm{C}$
Barometric Pressure $=760 \mathrm{~mm} \mathrm{Hg}$
Relative humidity $=80 \%$.
Using Psychrometric Chart determine:
(i) DPT in ${ }^{\circ} \mathrm{C}$
(ii) WBT in ${ }^{\circ} \mathrm{C}$
(iii) Absolute humidity in $\mathrm{kg} / \mathrm{kg}$ d.a
(iv) Enthalpy in $\mathrm{kJ} / \mathrm{kgd} . \mathrm{a}$
(c) Show state points of water on a "T-S phase diagram". Explain sub-cooling, superheating, critical point \& triple point of water. Using Steam Tables, for saturated steam at $180^{\circ} \mathrm{C}$, determine
(i) Saturation pressure in bar
(ii) Specific Entropy in $\mathrm{kJ} / \mathrm{kg}$ K
(iii) Enthalpy of saturated vapours in kJkg .
Q. 4 (a) Prove that for any thermodynamically feasible cyclic process $\oint \frac{d Q}{T} \leq 0$.
(b) What is Joule-Kelvin effect? Show that for ideal gases, $\mu_{\mathrm{j}, \mathrm{T}}=0$
(c) State first law of thermodynamics for a closed system undergoing a state change process. An ideal gas is allowed to expand isothermally in a reversible manner. Establish that the work done per mole of gas is given by $W=n R T \ln \frac{V_{2}}{V_{1}}$.
 gases.
(b) An insulated rigid tank of $0.2 \mathrm{~m}^{3}$ volume contains 25 kg of nitrogen gas at 4 bar pressure. A paddle wheel is rotated inside the tank so that its pressure increases to 5 bar. Calculate the following:
(i) Net heat transfer
(ii) Change in internal energy
(iii) Work done
(iv) Entropy change.
[Take $\mathrm{C}_{\mathrm{p}}=1.04 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$]
(c) Differentiate between steady and non-steady flow processes with examples.

Write down SFEE for a fluid stream entering and exiting a turbine. For a steady flow of steam through a turbine the following data are available:

Inlet Condition	Outlet Condition
$\mathrm{P}_{1}=50 \mathrm{bar}$	$\mathrm{P}_{1}=38 \mathrm{bar}$
$\mathrm{t}_{1}=500{ }^{\circ} \mathrm{C}$	$\mathrm{t}_{1}=470{ }^{\circ} \mathrm{C}$
$\mathrm{h}_{1}=3600 \mathrm{~kJ} / \mathrm{kg}$	$\mathrm{h}_{1}=3500 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{v}_{1}=0.072 \mathrm{~m}^{3} / \mathrm{kg}$	$\mathrm{v}_{1}=0.082 \mathrm{~m}^{3} / \mathrm{kg}$

A heat loss of $12 \mathrm{~kJ} / \mathrm{kg}$ occurs through the turbine due to poor insulation. Calculate the inlet and outlet velocities of steam. Assume that inlet and outlet cross-sectional areas and elevations are same.
Q. 5 (a) What is Gibb's phase rule? Calculate the degrees of freedom of liquid water at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure and at its critical point.
(b) Prove the following for a pure substance undergoing an infinitesimally reversible process:
(i) $\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$
(ii) $\mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}$
(iii) $\mathrm{dA}=-(\mathrm{PdV}+\mathrm{sdT})$
(iv) $\mathrm{dG}=\mathrm{VdP}-\mathrm{sdT}$
(c) State second law of thermodynamics. Draw a block diagram of a heat engine indicating work-energy flow directions and write energy balance equations. How will you express its Carnot and actual thermal efficiency? A heat engine operating on Carnot cycle produces 200 kW of power while operating between temperature limits of $750^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Determine the engine efficiency and the amount of heat input to the engine.

OR

Q. 5 (a) Explain types of thermodynamic equilibrium for a system and conditions for its stability.
(b) Using first principles, prove that $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$
(c) State Kelvin-Plank statement of second law of thermodynamics and explain the equivalence of Kelvin -Planck and Clausius statements with neat diagram.

