

www.FirstRanker.com

Enrolment. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER- III (New) EXAMINATION – WINTER 2019	
Subject Code: 3131704 Date: 26/11/2			
Subje	ect Na	me: Digital Electronics	
Time: 02:30 PM TO 05:00 PM Total Marks			70
Instrue			
		tempt all questions.	
		ake suitable assumptions wherever necessary. gures to the right indicate full marks.	
	з. гц	gures to the right mulcate fun marks.	MARKS
Q.1	(a)	Give the comparison of 1's and 2's complements.	03
V .1	(b)	Explain De Morgan's theorem with suitable example.	04
	(c)	Explain the commutative law, associative law, and distributive law in	07
		Boolean algebra with example	
Q.2	(a)	Convert $(163.875)_{10}$ to binary.	03
	(b)	Design Full Adder using two Half Adder and one two input OR gate.	04
	(c)	Implement the following function with 8:1 multiplexer:	07
		$F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$ OR	
	(c)	Explain the working of 4:1 multiplexer.	07
	(0)	Explain the working of 1.1 metuplexel.	07
Q.3	(a)	What do you mean by universal gates? Implement NOT, AND, OR with	03
		any one universal gate.	
	(b)	Implement 4 bit Shift Register for 1010 binary pattern.	04
	(c)	A combinational circuit is defined by functions: $F_1(A, B, C) = \sum_{i=1}^{n} (2, 5, C, T)$	07
		F1 (A,B,C) = $\sum m(3, 5, 6, 7)$ F2 (A,B,C) = $\sum m(0, 2, 4, 7)$	
		Implement the circuit with PLA having three inputs, four product terms	
		and two outputs.	
		OR	
Q.3	(a)	Explain the operation of master slave J-K flip flop.	03
	(b)	Explain gray code in detail.	04

(c) Design a type T counter for given state diagram 07

Q.4	(a)	Describe Fan In, Noise Margin and Propagation Delay parameters for	03
		digital IC.	
	(b)	xplain ROM with block diagram. Give classification of ROM.	04
	(c)	Design 3 to 8 line decoder with neat sketch and truth table.	07
	, í	OR	
Q.4	(a)	Simplify Boolean function $F = A'B'C'+B'CD'+A'BCD'+AB'C'$	03
		using K map.	
	(b)	Explain TTL gate with Totem pole output.	04

www.FirstRanker.com

	(c) -	explain 4 bit magnitude instruction ecessary Boole PirstrasiRer.co	om V/
Q.5	(a)	Explain D flip-flop.	03
	(b)	Explain arithmetic ,logic micro operation.	04
	(c)	Minimize the following function using tabulation method:	07
		$F(w, x, y, z) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$	
		OR	
Q.5	(a)	Design full subtracter with necessary derivation of functions.	03
-	(b)	Explain the following register transfer operation with the help of necessary diagram	04
		T1: C < A	
		T2: C < B	
	(c)	Assume A, B and C are 4 – bit registers. Simplify the Boolean expression $F(A,B,C,D) = \Sigma(2,3,6,7,8,10,11,13,14)$ using K Map.	07
