

www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

www.FirstRanker.com

Marks

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3131705 Date: 28/11/2019

Subject Name: Dynamics of Linear Systems

Time: 02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	(i) Define system.(ii) List out the types of system.	03
		Explain convolution property of z-transform.	04
	(c)	Consider the RC circuit given in the figure below. Assume that the circuit's time constant is $RC = 1$ s. The impulse response of this circuit is given by $h(t) = e^{-t}u(t)$.	07

Determine the voltage across the capacitor, y(t), resulting from an input voltage x(t) = u(t) - u(t-2).

Q.2 Use the convolution property to find the FT of the system 03 output $Y(j\omega)$ for the following inputs and system impulse response:

$$x(t) = 3e^{-t}u(t)$$
 and $h(t) = 2e^{-2t}u(t)$

Use the convolution property to find the time-domain signal 04 corresponding to the following frequency-domain representation:

$$X(e^{j\Omega}) = \left(\frac{1}{1 - \left(\frac{1}{2}\right)e^{-j\Omega}}\right) \left(\frac{1}{1 + \left(\frac{1}{2}\right)e^{-j\Omega}}\right)$$

Evaluate the periodic convolution of the sinusoidal signal 07 $z(t) = 2\cos(2\pi t) + \sin(4\pi t)$

with the periodic square wave x(t) as shown below:

- The output of an LTI system in response to an input x(t) =07 $e^{-2t}u(t)$ is $y(t) = e^{-t}u(t)$. Find the frequency response and the impulse response of this system.
- Find the DTFT of $x[n] = \delta[n]$ 03 **Q.3**

04

www.FirstRanker.com

 $x(t) = \sum_{t = -\infty} \delta(t - 4l)$

- Prove the following properties in context of Continuous **07** Time Fourier Transform:
 - (i) Time shifting
 - (ii) Time and frequency scaling

- Q.3 State Dirichlet condition for Fourier series representation. 03
 - Prove the duality property of Fourier transform.
 - Determine the appropriate Fourier representations of the 07 following time domain signals:
 - (i) $x(t) = e^{-t}\cos(2\pi t)u(t)$
 - (ii) $x(t) = |\sin(2\pi t)|$
- Explain the linearity property of Laplace transform. 03 **Q.4**
 - Derive the relationship between Laplace transform and 04 Fourier transform.
 - Analyze the role of Region of Convergence (ROC) for 07 defining the stability of system in the context of Laplace transform.

OR

- (a) Explain the modulation property in context of Fourier 03 0.4 transform.
 - (b) Explain the differencing and summation property of 04 discrete Fourier transform.
 - Find the inverse Discrete Time Fourier Transform (DTFT) 07 of

$$X(e^{j\Omega}) = \frac{-\frac{5}{6}e^{-j\Omega} + 5}{1 + \frac{1}{6}e^{-j\Omega} - \frac{1}{6}e^{-j\Omega^2}}$$

- Q.5 (a) Explain the linearity property of z-transform. 03
 - (b) Explain the concept of poles and zeros with respect to z-04 transform.
 - Determine the z-transform of the signal **07**

$$x[n] = -u[-n-1] + \left(\frac{1}{2}\right)^n u[n]$$

Depict the ROC and the locations of poles and zeros of X(z)in the z-plane.

OR

- Explain the initial value theorem in conext of z-transform. 03 Q.5
 - Determine the z-transform of the signal 04

$$x[n] = \alpha^n u[n]$$

Find the inverse z-transform of

$$X(z) = \frac{2 + z^{-1}}{1 - \frac{1}{2}z^{-1}}$$
with POC let 2

with ROC $|z| > \frac{1}{2}$

07