\qquad

Firstranker's choice

www.FirstRanker.com
Subject Name: Engineering Mechanics Time: 02:30 PM TO 05:00 PM

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate between following :i) Co-planar \& Non coplanar force system , ii) Concurrent \& Non concurrentforce system , iii) Resultant \& Equilibrant
(b) State and Prove with usual notation 'The law of Parallelogram' 04
(c) Find magnitude and inclination with +X -axis of resultant of force system shown 07 in fig 1. Identify type of force system.
Q. 2 (a) Define: (i) Angle of limiting friction (ϕ lim), (ii) Angle of repose (λ), and (iii) 03 Coefficient of friction (μ)
(b) Define Centroid and With usual notations find the centroid of a triangle bymethod of integration.
(c) A ladder of length 4 m weighing 200 N is placed against a vertical wall making an angle of 60° with the floor. The coefficient of friction between the wall and the ladder is 0.2 and that between floor and the ladder is 0.3 . The ladder in addition to its own weight has to support a man weighing 600 N at a distance of 3 m from foot of ladder. calculate the minimum horizontal force to be applied at foot of ladder to prevent slipping.07
Marks
OR
(c) Find Ixx and Iyy for symmetrical I-section with flanges 100 mm wide and 10 07 mm thick, web 280 mm deep and 10 mm thick.
Q. 3 (a) Differentiate between Truss and frame. 03
(b) Locate zero force members in truss shown in the fig 2. Also find axial forces in 04 remaining members.
(c) State pappus -Guldinus theorems. Using these theorems derive the formula for 07 surface area (A) and volume (V) for sphere of radius r.
OR
Q. 3 (a) Enumerate various types of supports with neat symbolic sketches, showing 03possible reactions.
(b) A simply supported beam of span 10 m , having rectangular cross-section 150 mm 04 wide x 300 mm deep subjected to uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$. Compute the values of maximum shear stress and bending stress produced in the beam.
(c) Determine the location of centroid of plane lamina shown in fig 3 with respect to07point O .
Q. 4 (a) Draw representative shear stress distribution diagrams for a) hollow rectangle, b) 03
I section, c) hollow circle
(b) Derive relation between young's modulus (E), bulk modulus (K), and modulus 04 of rigidity (G) with usual notation.(c) Draw shear force diagram and bending moment diagram for beam shown in fig 4 .07
Q. 4 (a) State Hook's law. Draw stress strant curve for Gild Steel Specimen and explan.
(b) Derive the formula for the elongation of a rectangular bar under the action of axial load.
(c) A stepped bar made of steel, copper and brass is under axial force as shown in fig 5 and is in equilibrium. The diameter of steel is 12 mm , diameter of copper is 16 mm and the diameter of brass is 20 mm . Determine (i) Magnitude of unknown force P (ii) stresses in each material and (iii) Total change in length of the bar. Take $\mathrm{E}_{\text {stee }}=200 \mathrm{GPa}, \mathrm{E}_{\text {copper }}=100 \mathrm{GPa}$ and $\mathrm{E}_{\text {brass }}=80 \mathrm{GPa}$
Q. 5 (a) Explain theory of pure bending. 03
(b) Determine reaction at supports for the Beam as shown in Fig 6. $\mathbf{0 4}$
(c) Determine the maximum bending stress and draw bending stress distribution in a $\mathbf{0 7}$ section as shown in fig. 7 ,if it is subjected to a bending moment of $20 \mathrm{kN}-\mathrm{m}$.

OR

Q. 5 (a) Define: (i) Lateral strain (ii) Poisson's ratio (iii) Modulus of rigidity. 03
(b) A bar 3 m long and 20 mm diameter is rigidly fixed in two supports at certain temperature. If temperature is raised by $60^{\circ} \mathrm{C}$, find thermal stress and strain of the bar. Also find thermal stress and strain if support yields by 2 mm . Take α $=12 \times 10^{-6} /{ }^{0} \mathrm{C}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(c) At a point in a strained material the state of stress is as shown in fig 8 . Determine (i) Location of Principal planes (ii) Principal stresses. (iii) Maximum shear stress and location of plane on which it acts.

