www.FirstRanker.com

www.FirstRanker.com

Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3132306 Date: 26/11/2019

Subject Name: Applied mathematics in Plastic Industry

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		U	
			Marks
Q.1	(a) (b)	Define i)Stress ii)Strain iii)Creep Explain the Hooke's model along with stress-strain and elongation-time plots.	03 04
	(c)	Determine the expressions of the creep, relaxation and recovery for the Maxwell mathematical model.	07
Q.2	(a)	Explain the viscoelastic behavior of plastics.	03
	(b)	Write a short note on the Ram extruder.	04
	(c)	Explain the Maxwell & Voigt models for visco-elasticity along with their stress-strain and elongation-time plots.	07
		OR	
	(c)	Determine the expressions of the creep, relaxation and recovery for the Kelvin or Voigt mathematical model.	07
Q.3	(a)	Explain the General behaviour of polymer melts.	03
	(b)	Explain the Newton's model along with stress-strain and elongation- time plots.	04
	(c)	Explain the deformation behavior of Polymeric Materials.	07
	3 5	OR	
Q.3	(a)	Discuss briefly the isometric & isochronous graph	03
_	(b)	Explain the creep curve in detail.	04
	(c)	A ball-point pen made from polypropylene has the clip design shown in	07
	A 6	Fig. When the pen is inserted into a pocket, the clip is subjected to a	
		deflection of 2 mm at point A. If the limiting strain in the material is to	
		be 0.5% calculate (i) a suitable thickness, d, for the clip (ii) the initial	
		stress in the clip when it is first inserted into the pocket. The short term	
		modulus of Polypropylene is 1.6 GN/m2.	
	2	40 mm width 6 mm	
		٠	
		2.4 mm	
Q.4	(a)	The output of polythene from an extruder is 30 x10-6 m3/s. If the	03
		breaker plate in this extruder has 80 holes, each being 4 mm diameter	
		and 12 mm long, estimate the pressure drop across the plate assuming	
		the material temperature is 170°C at this point. The shear stress is 1.2 x	
		10^5 N/m^2 .	20.000
	(b)	Explain the types of fibre reinforcement in composites.	04
	(c)	Discuss about the experimental methods used to obtain flow data and	07
		explain the cone and plate viscometer.	

www.FirstRanker.com

www.FirstRanker.com

07

					()R			
	Q.4	(a)	Explain the Melt Fracture flow defect.					03	
į e	ΛV.	(b)	Section 1 to the second section of the first term of the second section of the secti						
		(c)	Explain the	polymer processing and perature Gradient.	07				
	Q.5) 190	03						
		(a) (b)	Explain brie	efly the Pse	udo elastic d	w defect. o elastic design methods of plastics.			
		(c)	PEEK is to unidirection individual	be reinformal carbon to materials ar	ced with 30% fibres and the given below	by volume properties w. Calculate	of the	07	
	Q.5	(a) (b)	fibre Discuss abo	out concent	ric cylinder		ties for continuous fibre	03 04	

- (c) The constants for a four- parameter model are E_1 = $5x10^8$ N/m 2 , $\eta_2 = 5x10^8$ N.s/m 2 , E_3 = 10^8 N/m 2 and E_3 = 10^8 N.s/m 2 For creep and creep recovery experiments calculate:

 a. The instantaneous elastic strain
 - b. The recoverable retarded elastic strain
 - c. The permanent set