

www.FirstRanker.com

Enrowww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019 Date: 30/11/2019

Subject Code: 3132406

Subject Name: Circuit Theory

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

0.1

Q.2

Q.3

0.3

Q.4

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		Marks
(a)	Define: (i) electric current (ii) 1-volt (iii) electrical power.	03
(b)	What are the network elements and how it respond when electric energy supplied to it. What are the relationship between voltage and current in resister, inductor and capacitor ?	04
(c)	Find the current and voltage drop through 5 Ω resistor in the network of Fig. (1) using Node voltage analysis.	07
(a)	Define: (i) principle node (ii) branches (iii) graph.	03
(b)	Using Mesh analysis, find the current flow through the 50V source in the network of Fig. (2).	04
(c)	Explain maximum power transfer theorem with the help of circuit network. Derive the equation of maximum power for AC circuits. Also give the condition for maximum power transfer.	07
	OR	
(c)	Explain Superposition theorem for AC Networks with the help of circuit network.	07
(a)	Why study initial condition? Enlist the advantages which results from this understanding of initial condition.	03
(b)	Find the Norton's equivalent circuit for the network given in Fig. (3). Obtain current through 5 Ω resistor.	04
(c)	Find V_{old} by nodal analysis for the given network of Fig.(4).	07
	OR OR	
(a)	components in the different cases.	03
(b)	Explain transmission parameters and hybrid parameters.	04
(c)	Calculate the current passing through 10 Ω resistor in the network shown in Fig. (5). Use Mesh current method.	07
(a)	Derive y- parameters in terms of z-parameters.	03
(b)	Apply nodal analysis for the network shown in Fig. (6)	04

- and find current across 2 Ω resistor connected between two nodes.
- Find voltage V_x in the network as shown in Fig. (7) using 07 (c) Superposition Theorem.

OR

- Derive z- parameters in terms of y-parameters. **0.4** 03 (a)
 - **(b)** Explain 'poles' & 'zeros' with respect to circuit theory. 04

- Illustrate the www.FirstRanker.comstate portwww.FirstRanker.com (c) solution to a given network in Fig. (8) when switch moved from position "b" to "a" at t = 0. Find the expression for current.
- Q.5 Discuss relationship of two port variables. 03 **(a)**
 - Discuss frequency response for parallel resonance. **(b)** 04
 - A series RLC circuit having zero inductor current and (c) 07 zero capacitor voltage is excited by 20 Volt dc source. Assume $R = 10 \Omega$, L = 2H and C = 10 uF and a switch "K" is connected in series with RLC. Find $i(0^+)$ and di / dt $(0^{+}).$

OR

- Q.5 Discuss interconnections of two port networks. 03 (a) 04
 - Discuss frequency response for series resonance. **(b)**
 - In the network shown in Fig. (9), switch "K" is moved (c) from position 'a' to 'b' at t =0, steady state having previously been attained. Determine current i(t).

07

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com