GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3132406
Date: 30/11/2019
Subject Name: Circuit Theory
Time: 02:30 PM TO 05:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
Q. 1 (a) Define: (i) electric current (ii) 1-volt (iii) electrical 03 power.
(b) What are the network elements and how it respond when 04 electric energy supplied to it. What are the relationship between voltage and current in resister, inductor and capacitor?
(c) Find the current and voltage drop through 5Ω resistor in 07 the network of Fig. (1) using Node voltage analysis.
Q. 2 (a) Define: (i) principle node (ii) branches (iii) graph. 03
(b) Using Mesh analysis, find the current flow through the 04 50 V source in the network of Fig. (2).
(c) Explain maximum power transfer theorem with the help 07 of circuit network. Derive the equation of maximum power for AC circuits. Also give the condition for maximum power transfer.
OR
(c) Explain Superposition theorem for AC Networks with the 07 help of circuit network.
Q. 3 (a) Why study initial condition? Enlist the advantages which 03 results from this ünderstanding of initial condition.
(b) Find the Norton's equivalent circuit for the network given 04in Fig. (3). Obtain current through 5Ω resistor.
(c) Find $V_{o / c}$ by nodal analysis for the given network of 07
Fig.(4).
OR
Q. 3 (a) Mention the initial and final condition for R, L \& C 03
components in the different cases.
(b) Explain transmission parameters and hybrid parameters. 04
(c) Calculate the current passing through 10Ω resistor in the 07 network shown in Fig. (5). Use Mesh current method.
Q. 4 (a) Derive y-parameters in terms of z-parameters. 03
(b) Apply nodal analysis for the network shown in Fig. (6) 04and find current across 2Ω resistor connected betweentwo nodes.
(c) Find voltage V_{x} in the network as shown in Fig. (7) using 07Superposition Theorem.
OR
Q. 4 (a) Derive z- parameters in terms of y-parameters. 03
(b) Explain 'poles' \& 'zeros' with respect to circuit theory. 04
 solution to a given network in Fig. (8) when switch moved from position "b" to "a" at $t=0$. Find the expression for current.
Q. 5 (a) Discuss relationship of two port variables.
(b) Discuss frequency response for parallel resonance.
(c) A series RLC circuit having zero inductor current and zero capacitor voltage is excited by 20 Volt dc source. Assume $\mathrm{R}=10 \Omega, \mathrm{~L}=2 \mathrm{H}$ and $\mathrm{C}=10 \mathrm{uF}$ and a switch " K " is connected in series with RLC. Find $i\left(0^{+}\right)$and di / dt $\left(0^{+}\right)$.

OR

Q. 5 (a) Discuss interconnections of two port networks.
(b) Discuss frequency response for series resonance.
(c) In the network shown in Fig. (9), switch " K " is moved from position ' a ' to ' b ' at $t=0$, steady state having previously been attained. Determine current $\mathrm{i}(\mathrm{t})$.

Fig. (1)
Q. 1 (c)

Fig. (3)
Q. 3 (b)

Fig. (5) OR Q. 3 (c)

Fig. (2) Q. 2 (b)

Fig. (4)
Q. 3 (c)

Fig. (6)
Q. 4 (b)

Fig. (7) Q. 4 (c)

Fig. (8) OR Q. 4 (c)

Fig (9) OR Q 5 (C)

