FirstRanker.com

www.FirstRanker.com

Enrolment. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (Old) EXAMINATION – WINTER 2019			
Subject Code: 130002 Date: 22/11/20			
Subject Name: Advanced Engineering Mathematics			
Time: 02:30 PM TO 05:30 PM Total Marks:)
Instructions:			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)	(i) Solve $ye^{x} dx + (2y + e^{x}) dy = 0$	03
C ¹		(ii) Solve $(x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2$	04
	(b)	Obtain Fourier series of $f(x) = x^2$ in the interval(0, 4).	07
02	(°) (a)	(i) Use method of Undetermined coefficients and find general solution of	07
Q.2	(a)	(i) Use method of Undetermined coefficients and find general solution of $y'' + 10y' + 25y = e^{-5x}$	07
	(b)	Find general solution of $(D^2 + 2D - 35)y = 37 \sin 5x$ OR	07
	(b)	Solve by Variation of parameter method $(D^2 + 9)y = tan3x$	07
Q.3	(a)	Find Fourier series of $f(x) = e^{ax}$ in $(0, 2\pi), a > 0$	07
	(b)	Find Fourier series of $f(x) = \begin{cases} x & , 0 \le x \le 2\\ 4-x & , 2 \le x \le 4 \end{cases}$	07
		$\begin{array}{c} (4-x) \\ \mathbf{OR} \end{array}, 2 \leq x \leq 4 \\ \mathbf{OR} \end{array}$	
Q.3	(a)	Find the Series solution of $y'' - 2y' = 0$	07
	(b)	Express the function $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral and	07
		show that	
		$\int_{-\infty}^{\infty} \frac{\sin \omega x \sin \pi \omega}{d\omega} = \frac{\pi}{-} \sin x 0 < x < \pi$	
		show that $\int_0^\infty \frac{\sin \omega x \sin \pi \omega}{1 - \omega^2} d\omega = \frac{\pi}{2} \sin x , 0 \le x \le \pi$	
Q.4	(a)	(i) Find Laplace transform of $e^t (1 + \sqrt{t})^4$	03
C ¹		(i) Find Laplace transform of $e^{-(1+\sqrt{t})}$	04
	(L)	(ii) Find the inverse Laplace transform of $\frac{2s+2}{s^2+2s+10}$	07
	(b)	State Convolution theorem and using it find inverse Laplace transform of 1	07
		$\frac{1}{(s-2)(s+2)^2}$	
Q.4	(a)	(i) Find Laplace transform of $e^{-3t} u(t-2)$	03
C		(ii) Find inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	04
	(b)	Solve initial value problem using Laplace transform method	07
		$y'' - 3y' + 2y = 12e^{-2t}$, $y(0) = 2, y'(0) = 6$	07
Q.5	(a)	(i) Form Partial differential equation for the equation	03
-		z = ax + by + ct	0.4
		(ii) Find Laplace transform of $f(t) = \begin{cases} \cos t & , 0 < t < 2\pi \\ 0 & , t > 2\pi \end{cases}$	04
		- , •	

www.FirstRanker.com ⁰⁷

07

FirstRanker.com Firstronker's choice Solve $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2}$ FirstRanker.com

Q.5 (a) Find the Series solution of
$$4xy'' + 2y' + y = 0$$

(b) Using method of Separation of variables solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ given that $u(0, y) = 8 e^{-3y}$ 07

www.FirstRanker.com