GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OId) EXAMINATION - WINTER 2019
Subject Code: 130101
Date: 26/11/2019
Subject Name: Fluid Mechanics
Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 2 (a) Explain different types of manometers and explain the working of differential

U-tube manometer.
(b) State and Prove Pascal's law 07

OR

(b) Explain the condition of stability for a submerged and floating body with neat diagram.

OR

Q. 3	(a)	Define total hydrostatic force and centre of pressure. Derive an expression for both	$\mathbf{0 7}$
when the surface is vertically immersed.			
(b)Explain the construction and working of a Venturimeter and also derive an expression for the discharge through it.			

Q. 4 (a) Define notch and weir. Derive an expression for discharge over triangular notch. 07
(b) The head of water over an orifice of diameter 7.5 cm is 7.5 m . The jet of water coming out from the orifice is collected in a tank having cross-sectional area of 1 mx 1 m . The rise of water level in this tank is 0.87 m in 25 seconds. The coordinates of a point on the jet measured from venacontracta are 3.75 m horizontal and 0.5 m vertical. Find the co-efficient of discharge, co-efficient of velocity and coefficient of contraction.

OR

Q. 4 (a) Derive Darcy Weisbach equation with usual notation. 07
(b) Define circulation and velocity potential function. Explain flow net and state the importance of flow net.
 circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.
(b) State the different methods for measurement of viscosity. Explain any one of $\mathbf{0 7}$ them.

OR

Q. 5 (a) State Buckingham's π theorem. What do you mean by repeating variables? How 07 are the repeating variables selected in dimensional analysis?
(b) State Bernoulli's theorem for compressible fluid flow and derive an expression for $\mathbf{0 7}$ the same when the process is adiabatic.

