\qquad Enrolment No. \qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019

Subject Code: 2140001
Date: 07/12/2019
Subject Name: Mathematics-4
Time: 10:30 AM TO 01:30 PM
Total Marks: 70
Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q-1 (a) Find the principal argument of $z=\frac{1-7 i}{(2+i)^{2}} \quad 3$
(b) If $f(z)=\frac{x^{3}-y^{3}}{x^{3}+y^{3}}$ if $(x, y) \neq(0,0)$

$$
=0 \quad \text { if }(x, y)=(0,0)
$$

Show that $f(z)$ is not continuous at the origin.
(c) Solve the following system of linear equations by Gauss-elimination
method. $x+y+z=9,2 x-3 y+4 z=13,3 x+4 y+5 z=40$.
Q-2 (a) Check whether the function $f(z)=\bar{z}$ is analytic or not? 3
(b) Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic in some domain and 4 find a harmonic conjugate $v(x, y)$.
(c) Determine the mobius transformation that maps $z_{1}=0, z_{2}=1, z_{3}=\infty \quad 7$ onto $w_{1}=-1, w_{2}=-i, w_{3}=1$ respectively.

OR

(c) Find real and imaginăry parts of $(-1-i)^{7}+(-1+i)^{7}$

Q-3 (a) Prove that $\oint_{C} \frac{\sin 3 z}{z+\frac{\pi}{2}} d z=2 \pi i$, where C is the circle $|z|=5$.
(b) Expand $f(z)=\frac{1-e^{z}}{z}$ in Laurent's series about $z=0$ and identify singularity.
(c) Use residues to evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$

OR

(a) Find the radius of convergence of $\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}} z^{n}$.
(b) Evaluate $\oint_{C}\left(x^{2}-i y^{2}\right) d z$ along the parabola $y=2 x^{2}$ from $(1,2)$ to $(2,8)$.
(c) Expand $f(z)=\frac{1}{(z+2)(z+4)}$ valid for the regions (i) $|z|<2$, (ii) $2<|z|<4,(i i i)|z|>4$.

Q-4 (a) Prove that : $\Delta \ln f(x)=\ln \left[1+\frac{\Delta f(x)}{f(x)}\right]$
(b) Find a real root of the equation $x^{3}+4 x^{2}-1=0$ by using bisection method correct up to two decimal places.
(c) Determine the interpolating polynomial of degree three using Lagrange's interpolation formula for the table below.

x	-1	0	1	3
y	2	1	0	-1

OR
(a) Use trapezoidal rule to estimate $\int_{0.5}^{1.3} e^{x^{2}} d x$ using a strip of width 0.2.
(b) Evaluate $I=\int_{0}^{1} \frac{d t}{1+t}$ by one point, Gaussian formula.
(c) Solve the following equations by Gauss-Seidel method correct up to two decimal places $20 x+2 y+z=30, x-40 y-3 z=-75,2 x-y+$ $10 z=30$.

Q5 (a) Compute $\cosh (0.56)$ using Newton's forward difference formula for the following table.

X	0.5	06	0.7	0.8
$\mathrm{~F}(\mathrm{X})$	1.127626	1.185465	1.255169	1.337435

(b) Using Newton's divided difference interpolation formula compute $f(9.2)$ from the following data.

X	8.0	9.0	9.5	11.0
$\mathrm{f}(\mathrm{x})$	2.079442	2.197225	2.251292	2.397895

(c) Using improved Euler's method, solye $y^{\prime}=1-y$ with the initial condition $y(0)=0$ and tabulate the solutions at $x=0.1,0.2$. compare the answer with the exact solution.

OR

(a) Using N-R method find an iterative formula to find \sqrt{N} (where N is positive number) and hence find $\sqrt{5}$.
(b) Evaluate the integral $\int_{4}^{5.2} \log _{e} x d x$, using Simpson's $\frac{3}{8}$ th rule.
(c) Find the largest eigen value and the corresponding eigenvector for $A=$

