\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019
Subject Code: 2140105
Subject Name: Numerical Methods
Time: 10:30 AM TO 01:00 PM
Date: 07/12/2019
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) State the numerical methods for solving initial value differential equations.
(b) Implement bisection method to solve $x^{3}-4 x-9=0$
(c) Describe the fitting of a straight line $\mathrm{y}=\mathrm{ae}^{\mathrm{bx}}$ and fit it for the data,

x	2.30	3.10	4.00	4.92	5.91	7.20
y	33.0	39.1	50.3	67.2	85.6	125.0

Q. 2 (a) State the formulae for Lagranges interpolation methods.
(b) Using the Lagranges formula find the polynomial and evaluate $f(9)$.

x	5	7	11	13	17
y	150	392	4452	2366	5202

(c) Obtain cubic spline for every subinterval from the following data:

x	0	l	2	3
y	2	-6	-8	2

(c) Use Stirling's formúlae for finding $\mathrm{y}(12.2)$ from the data:

X	10	11	12	13	14
y	23967	28060	31788	35209	38368

Q. 3 (a) Use Gauss elimination solve $x+4 y-z=-5, x+y-6 z=-12,3 x-y-z=4$.
(b) Use Trapezoidal rule to evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ taking $\mathrm{h}=1$, step length.
(c) Describe the Newton Raphson method in brief and evaluate
\sqrt{N} for $\mathrm{N}=10$.

OR

Q. 3 (a) Use Gauss Jordan method to solve $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$. 03
(b) Use Simpsons $3 / 8$ rule to evaluate, taking $\mathrm{h}=0.2$ and $\mathrm{n}=6$ for
$\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$
www.FirstRanker.com
(c) Describe method of False position and solve $\cos x-x e^{x}$ within the07 interval $(0,1)$.
Q. 4 (a) State the finite difference method for laplace equation
(b) Solve heat equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial t^{2}}=0$ over a rectangular slab that is 20 cm wide and 10 cm high All edges are kept at 0^{0} except the right edge which is maintained at 100°. There is no heat gain or lost from the surface of the slab. Place nodes with step length of 5 cm to generate grids and solve using finite difference method.
(c) State the Taylors method and solve equation,
$\frac{d y}{d x}=x+y$ with $\quad x_{0}=0, y_{0}=1$. Let $\mathrm{h}=0.1$ and find four iterations.

OR

Q. 4 (a) State the finite difference quotients for first and second order derivatives.
(b) Solve y " $+4 \mathrm{y}+1=0$ with $\mathrm{y}(0)=0, \mathrm{y}(1)=0$, Using $\mathrm{h}=0.5$ implement finite difference approach.
(c) State the Picard's formula and solve the equation for $\mathrm{x}=0.1$ $\frac{d y}{d x}=\frac{y-x}{y+x}$

$$
\text { with } y(0)=1
$$

Q. 5 (a) Discuss in brief finite difference and finite element approach
(b) Describe the Galerikin method in brief.
(c) Solve using Runge Kutta $4^{\text {th }}$ order method $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$
$\mathrm{y}(0)=1$ for $\mathrm{x}=0.2, \mathrm{x}=0.4$.

OR

Q. 5 (a) Discuss the shooting approach for boundary value problems.
(b) Solve $\mathrm{u}^{\prime \prime}=\mathrm{u}, \mathrm{u}^{\prime}(1)=1.1752, \mathrm{u}^{\prime}(3)=10.01787$ using appropriate method.
(c) Implement shooting method to solve $u^{\prime \prime}-\left(1-\frac{x}{5}\right) u=x$ with $\mathrm{u}(1)=2$, $u(3)=-1$.

