

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER- IV (New) EXAMINATION - WINTER 2019	
	Suk	oject Code: 2140403 Date: 14/12/2019	1
	Sub	ject Name: Principles of Process Engineering-I	
	Tin	ne: 10:30 AM TO 01:00 PM Total Marks: 70	
	Inst	ructions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. 	
		3. Figures to the right indicate full marks.	
		•••	MARKS
Q.1		Short Questions	14
-	1	What is Conduction?	01
	2	What do you mean by heat transfer?	01
	3	Write the units of thermal conductivity	01
	4	Write value of Stefan-Boltzmann Constant with proper units.	01
	5	What is monochromatic Emissivity?	01
	6 7	Define: opaque body and white body State Kirchhoff's Law of Heat Padiation	02
	/ 8	What is nump?	01
	9	Value of coefficient of discharge for venturi meter is	01
	10	Define: a) Ideal Fluid b) Real Fluid c) Bingham Plastic fluid d) inviscid	04
Q.2	(a)	Differentiate between Natural Convection and Forced Convection with suitable	03
		examples.	
	(b)	Derive the expression for critical radius of insulation in case of cylinder.	04
	(c)	Calculate the critical radius of insulation for asbestos with $k=0.17$ W/m ² K	07
		surrounding a pipe and exposed to room air at 20 °C with h=3 W/m ² K. Calculate	
		the heat loss from a 200 °C, 50 mm diameter pipe when covered with the critical	
		radius of insulation and without insulation. Would any fiber glass insulation having	
		a thermal conductivity of 0.04 W/m.K cause decrease in heat transfer?	
		OR	
	(c)	Explain Fourier's law for heat conduction in detail. Also apply it for the case of	07
		plane wall and composite wall with neat sketches.	
Q.3	(a)	Write note on double pipe heat exchanger with neat diagram.	03
	(b)	Explain advantages and disadvantages of single pass and multi pass heat	04
		exchangers.	
	(c)	Derive equation for LMTD in case of heat exchanger.	07
		OR	
Q.3	(a)	Give the detailed classification of fluids.	03
	(b)	Discuss in brief the three modes of Heat transfer.	04
	(c)	Explain principle of hydrostatic equilibrium and derive expression for it.	07
0.4	(a)	Explain concept of black body in brief.	03
ו•	(h)	Explain different types of flow pattern in heat exchanger	04
	(c)	Derive Bernoulli's equation with appropriate assumptions and write it for pump	07
	(-)	Denve Demount 5 equation with appropriate assumptions and write it for pump.	

Q.5	(a)	Give the detailed classification of pumps.	03
	(b)	Explain cavitations in pump.	04
	(c)	Calculate the power to pump a liquid at the rate of 1.5 kg/s from a ground level tank	07
		at atmospheric pressure through a 50mm ID steel pipe to an overhead tank 3m	
		above at 2 kg/cm2 pressure. The distance between two tanks is 500m. Efficiency	
		of the pump is 70%. The density and viscosity of the liquid is 1500kg/m3 and 20 cp	
		respectively. Friction factor $f = 16/NRe$	
		OR	

- Q.5 (a) Explain concept of drag force
 - 03 (b) Explain concept of fluidization and give types of fluidization. 04 Explain construction and working of venturi meter and also derive flow equation 07 (c) for the same with neat sketch.

www.FirstRanker.com