GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (New) EXAMINATION - WINTER 2019

Subject Code: 2140406
Date: 12/12/2019
Subject Name: Stoichiometry
Time: 10:30 AM TO 01:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

$$
\begin{aligned}
& \text { Q. } 1 \text { (a) Define: Ideal gas law, Raoult's law, Henry's law. } \\
& \text { (b) The conductance of a fluid -flow sytem is defined as volumetric flow rate, reffered } \\
& \text { to a pressure of one torr (133.322 Pa.). For an orifice, the conductance C can be } \\
& \text { computed from } \\
& \qquad C=89.2 A \sqrt{\frac{T}{M}} f t^{3} / s \\
& \text { Where A = area of opening.ft }{ }^{2}, \mathrm{~T}=\text { Temperature, }{ }^{\mathrm{O}} \mathrm{R}, \mathrm{M}=\text { Molecular Weight. } \\
& \text { Convert the empirical equation into SI units. } \\
& \text { (c) } \text { The average molar mass of a flue gas sample is calculated by two different } \\
& \text { engineers. One engineer uses the correct molar mass of } 28 \text { for } \mathrm{N}_{2} \text { and determines } \\
& \text { the average molar mass to be } 30.08 \text {, the other engineer using an incorrect value of } \\
& \text { 14, calculate the average molar mass to be } 18.74 \text {. Calculate i) the volume } \% \text { of } \mathrm{N}_{2} \\
& \text { in the flue gases, and ii) if the remaining components of the flue gases are } \mathrm{CO}_{2} \\
& \text { and } \mathrm{O}_{2} \text {. }
\end{aligned}
$$

Q. 2 (a) Iron metal weighs 200 lb \& occupies a volume of 117 lit. Find the density in $\mathrm{gm} / \mathrm{cm}^{3}$.
(b) The diameter and height of a vertical cylindrical tank are 5 ft and 6 ft 6 inch respectively. It is full up to 75% height with carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$, the density of which is $1.6 \mathrm{~kg} / \mathrm{lit}$. Find the mass in kg .
(c) Cracked gas from a petroleum(refinery has the following composition by vol.; Methane 45%, Ehtane 10%, Ehtylene 25%, Propane 7\%, Propylene 8%, n-Butane 5%. Find: a) Average molecular weight of the mixture, and b) the composition by $\mathrm{wt} \%$.

OR

(c) An aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is prepared by dissolving $43 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{CO}_{3}$ in 100 kg water at 293 K. Find the molarity, normality and molality of the solution. Take specific gravity of the solution as 1.3 .
Q. 3 (a) Discuss methods of solving material balance problems without chemical reaction.
(b) State recycling and bypassing operations with their importance in the process industries.
(c) The waste acid from a nitrating process containing $20 \% \mathrm{HNO}_{3}, 55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $25 \% \mathrm{H}_{2} \mathrm{O}$ by weight is to be concentrated by addition of concentrated sulphuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated nitric acid containing $90 \% \mathrm{HNO}_{3}$ to get desired mixed acid containing $26 \% \mathrm{HNO}_{3}$ and $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the quantities of waste acid and concentrated acids required for 1000 kg of desired acid.

OR

Q. 3 (a) Define : Conversion, yield, selectivity. 03
(b) Formaldehyde is produced from methanol catalytic reactor. The production rate of formaldehyde is $1000 \mathrm{~kg} / \mathrm{h}$. If conversion of methanol is 65%, calculate the required feed rate of methanol.
 formaldehyde. The analysis of the solution indicated that TOC and ThOD are 258.3 $\mathrm{mg} / \mathrm{lit}$ and and $965.5 \mathrm{mg} /$ lit respectively. Find the concentration of each of the compounds in the sample.
Q. 4 (a) Define: i) Standard Heat of Formation ii) Standard Heat of Combustion iii) Standard Heat of Reaction.
(b) Soyabeen seeds are extracted with n-hexane in batch extractors. The flaked seeds contain 18.6% oil, 69.0% solids and 12.4% moisture. At the end of the extraction process, de-oiled cake (DOC) analysis yields 0.8% oil, 87.7% solids and 11.5% moisture. Find the percentage recovery of oil. All percentages are by mass.
(c) In the Deacon process for manufacturing chlorine, HCl gas is oxidized with air. The reaction taking place is: $4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$ If the air is used in excess of 30% of that theoretically required, and if the oxidation is 80% complete, calculate the composition by volume of dry gases leaving the reaction chamber.

OR

Q. 4 (a) State Hess's law of constant heat summation with example.
(b) Pure methane is heated from 303 K to 523 K at atmospheric pressure. Calculate the heat added per kmol methane, using data given. $C_{p}=a+b T+c T^{2}$ where $\mathrm{C}_{\mathrm{p}}{ }^{0}=$ Ideal gas heat capacity at $101.325 \mathrm{kPa}, \mathrm{kJ} /(\mathrm{kmol} . \mathrm{K})$ and $\quad \mathrm{T}=$ Absolute temperature, K

Compound	a	$\mathrm{b} \times 10^{-3}$	$\mathrm{c} \times 10^{-6}$	$\mathrm{~d} \times 10^{-9}$
Methane $\left(\mathrm{CH}_{4}\right)$	19.2494	52.1135	11.973	-11.3173

(c) A pilot plant reactor was charged with 50 kg naphthalene and 200 kg (98% by wt.) $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction was carried out for 3 hours at 433 K . the reaction goes to near completion. The product distribution was found to be 18.6% monosulphonate naphthalene and 81.4% disulphonate naphthalene. Calculate: a) the quantities of monosulphonate (MSN) and disulphonate (DSN) products, and b) the complete analysis of product.
Q. 5 (a) Explain material balance of Extractor.
(b) A heat exchanger for cooling a hot hydrócarbon liquid uses $10000 \mathrm{~kg} / \mathrm{hr}$ of cooling water, which enters the exchanger at 294 K . the hot oil at the rate of $5000 \mathrm{~kg} / \mathrm{hr}$ enters at 423 K and leaves at 338 K and has an average heat capacity of 2.51 $\mathrm{KJ} /(\mathrm{kg} . \mathrm{K})$. Calculate the outlet temperature of water.
(c) Obtain an empirical equation for calculating the heat of reaction at any temperature T (in K) for the reaction $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$. Data: ΔH_{R}° at $298 \mathrm{~K}=-$ $82.66 \mathrm{~kJ} / \mathrm{mol}, C_{p}=a+b T+c T^{2}+d T^{3}, \mathrm{~J} / \mathrm{kmol} . \mathrm{K}$

Component	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
$\mathrm{CH}_{4}(\mathrm{~g})$	19.2494	52.1135	11.973	-11.3173
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$	4.1261	155.0213	-81.5455	16.9755
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$	-4.2227	306.264	-158.6316	32.1455

OR

Q. 5 (a) Explain material balance of Crystallizer.
(b) Define \& explain following terms: i) absolute humidity (H) ii) \% humidity iii) wet-bulb temp (WB) iv) humid heat (Cs).
(c) 10000 kg of an aq sol containing 29.6% by wt anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at 413 K is charged to the crystallizer. During the cooling, 5% of initial water is lost by evaporation. As a result, crystals of $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{H}_{2} \mathrm{O}$ crystallize out. If the mother liquor is found to contain 18.3 \% (by wt) anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Cal the yield \& the quantity of mother liquor.

