

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject	BI t Co	E - SEME de: 21405	STER- IV 505	V (New) F	EXAMIN	ATION -	WINTER Date	R 2019 e: 07/12/2	019	
Subject Time: 1 Instruction 1 2 3	t Nai l0:30 ons: . Att . Ma . Fig	Me: Cher AM TO 0 cempt all qu ike suitable gures to the	mical Er 1:30 PM lestions. assumption right indi	ngineerii ons where cate full n	ng Math wer necess narks.	IS ary.	Tot	al Marks	: 70	
Q.1	(a)	Define fo	llowing,						03	
	(b)	1. Error 2. Truncation error 3. Relative error Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and							04	
	(0)	its absolute and relative errors.								
	(c)	Using the secant method, find a real root of equation $e^{x} - 1 = 0$ correct to four decimal places.								
0.2	(a)	Write an algorithm for Regula Falsi method								
Q.2	(a) (b)	Evaluate	Evaluate $\sqrt{12}$ correct to three decimal places using Newton-							
	. ,	Raphson method.								
	(c)	Find root of the equation $x^3 - 2x - 5 = 0$ using the bisection method 07 correct upto three decimal places.								
	(c)	Use Gauss elimination method to solve the following system, 2x + y + z = 10, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$								
Q.3	(a)	Define E	igen value	s and Eig	en vectors).	- 10		03	
-	(b)	Describe Jacobi's method.								
	(c)	Solve the system, $6x + y + z = 20$, $x + 4y - z = 6$, $x - y + 5z = 7$ 0 using Gauss Seidel method.								
Q.3	(a)	Find the i	inverse of	the matrix	X,				03	
-	. /	$\mathbf{A} = \begin{bmatrix} \mathbf{c} \\ \mathbf{c} \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$							
	(b)	Find the best values of a_0 and a_1 if the straight line (
		$y = a_0 + a_0$	$\mathfrak{l}_1 \mathfrak{X}$ 1s fitte	d to the d	ata (x_i, y_i)	:	5			
		X	1	$\frac{2}{2}$	35	4	57			
		Find also	the corre	lation coe	efficient.	T. 0	5.7			
	(c)	Find constants a and b such that the function $v = ae^{bx}$ fits the 0								
	. /	following data:								
		X	1	3	5	7	9			
_		у	2.473	6.722	18.274	49.673	135.026		_	
Q.4	(a)	Derive the formula for Simpson's 3/8 Rule. 03								
	(b)	Establish Newton's forward interpolation formula.								

trank	kęt's	Chrien the	e table of	valuesiasi	Rankor	com	14/14/14	/ FiretRanl	colizon				
		Х	2.5	3.0	3.5	4.0	4.5						
		y(x)	9.75	12.45	15.70	19.52	23.75						
		Find y (4.25), using Newton's backward difference interpolation											
		formula.											
0.4		XX 7 •4	1 .1	C T	OR	1			0.2				
Q.4	(a) (b)	write an algorithm for Trapezoidal Rule. -1 dx											
	(U)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpsons 3/8 rule taking											
		$h = \frac{1}{2}$.											
	(\mathbf{c})	$\frac{6}{6}$											
	(C)	Evaluate $\int_{1}^{2} e^{-0.5x} dx$ using four intervals for Simpson's 1/3 rule											
~ -		and Trapezoidal rule.											
Q.5	(a)	Describe the method of finite difference approximations to partial											
	(b)	derivatives. Use second order Runge – Kutta method to solve											
	()	$\frac{dy}{dx} = 3x$	+ v given	v = 1.3 v	vhen x =	1 to appro	vimate v	when x =	•••				
		$\frac{1}{dx} = 5x + y$, given $y = 1.5$ when $x = 1$ to approximate y when $x = 1.2$ taking stop size 0.1											
	(c)	1.2 taking step size 0.1. Determine the value of wat $y = 0.2$ given that $\frac{dy}{dy} = y + y$ and $y(0)$											
		Determine the value of y at x=0.5, given that $\frac{1}{dx} = x + y$ and y(0)											
		-1, using	moarried	Euler s n									
0.5	(a)	Discuss in brief about Milne's Predictor-Corrector method.											
	(b)	Using Taylor's series method, obtain the solution of											
		$\frac{dy}{dx} = 3x + y^2$, given that y (0) = 1. Find the value of y for x = 0.1.											
	(c)	Use fourth order Runge – Kutta method to find the value of v when											
	$x = 0.2$, given that $y' = x + y^2$, and $y = 1$ when $x = 0$ taking step size												
		0.1.											
				***	******								
					VO.								
				Ó	<u> </u>								
				S.	r								
				S									
			. 1.										
			2,										